{"title":"Capture and lyase-triggered release of circulating tumor cells using a disposable microfluidic chip embedded with core/shell nylon-6/Ca(II)-alginate immunofiber mats.","authors":"Hung-Yen Ke, Chi-Jung Chang, Shih-Ying Sung, Chien-Sung Tsai, Feng-Yen Lin, Jem-Kun Chen","doi":"10.1039/d4tb02226b","DOIUrl":"https://doi.org/10.1039/d4tb02226b","url":null,"abstract":"<p><p>High-efficiency capture, release, and reculture of circulating tumor cells (CTCs) can significantly advance individualized cancer treatments. To achieve efficient CTC release without compromising their viability for subsequent reculture, an effective CTC capture/release system was developed. Nylon-6 (N6) and a cross-linked alginate hydrogel with Ca(II) were used as the shell and core, respectively, to prepare N6/Ca-Alg immunofiber mats using coaxial electrospinning. A 3 wt% concentration of Ca(II) was used to increase the viscosity of the alginate solution and generate a degradable coating on the N6 fiber. After modification with streptavidin and anti-EpCAM, the N6/Ca-Alg immunofiber mat was embedded within a disposable microfluidic chip to investigate the capture capacity of CTCs. The maximum adsorption capacity of CTCs was approximately 34 cells per mm<sup>2</sup>, while the viability of the captured cells was 95.1% after being released from the fibrous mats. The outer Ca-alginate hydrogel coating effectively enhanced the viability of the released cells for reculture. In spiked blood samples, our microfluidic system was able to specifically identify DLD1 cells from 10 mL of human whole blood at a concentration of 65.6 cells per mL with 67.9% efficiency within 30 minutes. Under the flow of alginate lyase solution at 0.4 mg mL<sup>-1</sup>, the reculture efficiency of the released cells after 7 days reached 274.5%. Our proposed method provides an ideal fibrous mat to be embedded within a microfluidic chip for capturing and releasing CTCs for precision medicine applications, using recultured CTCs in individualized anti-tumor therapies.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143545456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Efficient red-emitting carbon dots and albumin composites for precise synovial bioimaging in rheumatoid arthritis.","authors":"Haojie Li, Longlong Wang, Ke Xiao, Qian He","doi":"10.1039/d4tb02622e","DOIUrl":"10.1039/d4tb02622e","url":null,"abstract":"<p><p>Rheumatoid arthritis (RA) is a chronic autoimmune disorder that frequently leads to significant disabilities and requires complex therapeutic strategies. Early detection and accurate monitoring of synovial lesions are crucial for effective treatment; however, the development of targeted imaging probes remains a significant challenge. Secreted protein acidic and rich in cysteine (SPARC) is overexpressed in the synovium and the concentration of serum albumin is lower in RA patients. Inspired by this, we developed a novel bioimaging strategy for monitoring RA progression by constructing a 100 nm red-fluorescent nanoprobe (CDs@BSA) through electrostatic conjugation of carbon dots (CDs) with bovine serum albumin (BSA). The interaction between BSA and SPARC facilitates precise targeting of RA lesion sites, improving imaging accuracy. The probe demonstrated rapid imaging capabilities, with signal initiation within 1 h and sustained for at least 24 h, enabling the real-time monitoring of disease progression. This work introduces a straightforward approach for designing diagnostic probes using carbon-based nanomaterials, emphasizing their potential for high-resolution, synovial-targeted photoluminescence imaging in RA.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143485098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shital S Shendage, Kranti Kachare, Kajal Gaikwad, Shivaji Kashte, Fu-Der Mai, Anil Vithal Ghule
{"title":"Cellulose-based bioactive material and turmeric-impregnated flexible and biocompatible scaffold for bone tissue engineering applications.","authors":"Shital S Shendage, Kranti Kachare, Kajal Gaikwad, Shivaji Kashte, Fu-Der Mai, Anil Vithal Ghule","doi":"10.1039/d4tb02028f","DOIUrl":"10.1039/d4tb02028f","url":null,"abstract":"<p><p>Metal transplants, autografts, and allografts are currently used for the treatment of bone-related problems, but each comes with inherent limitations. However, advances in science and technology have underscored the need for the development of cost-effective, eco-friendly, and customized architectural scaffolds with desirable porosity and mechanical strength. Additionally, the synthesis of sustainable scaffolds using biowaste is being studied to decrease environmental pollution. Green fabrication of scaffolds has an inestimable influence on decreasing production costs and toxicity while increasing biological compatibility. With this motivation, in the present study, a 70S30C calcium silicate bioactive material (BM) was synthesized through a simple precipitation method, using recycled rice husk (as a silica source) and eggshells (as a calcium source). Further, the BM and turmeric powder (Tm) were impregnated onto cellulose-based cotton fabric (CF), considering its easy availability, flexibility, mechanical strength, and cost-effective nature. The prepared scaffolds were characterized using UV-visible spectroscopy, XRD, FTIR spectroscopy, SEM, and EDS mapping. Further, <i>in vitro</i> bioactivity and degradation studies were performed in simulated body fluid (SBF). The <i>in vitro</i> haemolysis study revealed less than 5% haemolysis. <i>Ex ovo</i> CAM results showed good neovascularization. Both <i>in vitro</i> and <i>in vivo</i> biocompatibility studies demonstrated non-toxic nature. Furthermore, <i>in vivo</i> osteogenesis results showed bone regeneration capacity, as confirmed by X-ray and histological analysis. Thus, the CF template impregnated with BM and Tm acts as a porous, flexible, bioactive, degradable, haemocompatible, osteogenic, antibacterial, cost-effective, and eco-friendly scaffold for bone tissue engineering applications.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143392829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tom Roussel, Twiany Cruz-Dubois, Beatrice Louis, Erik Laurini, Ling Ding, Laure Balasse, Vincent Nail, Françoise Dignat-George, Suzanne Giorgio, Sabrina Pricl, Benjamin Guillet, Philippe Garrigue, Ling Peng
{"title":"Impact of inner hydrophobicity of dendrimer nanomicelles on biodistribution: a PET imaging study.","authors":"Tom Roussel, Twiany Cruz-Dubois, Beatrice Louis, Erik Laurini, Ling Ding, Laure Balasse, Vincent Nail, Françoise Dignat-George, Suzanne Giorgio, Sabrina Pricl, Benjamin Guillet, Philippe Garrigue, Ling Peng","doi":"10.1039/d4tb01266f","DOIUrl":"10.1039/d4tb01266f","url":null,"abstract":"<p><p>Self-assembly is a powerful strategy for building nanosystems for biomedical applications. We have recently developed small amphiphilic dendrimers capable of self-assembling into nanomicelles for tumor imaging. In this context, we studied the impact of increased hydrophobicity of the amphiphilic dendrimer on hydrophilic/hydrophobic balance and consequently on the self-assembly and subsequent biodistribution. Remarkably, despite maintaining the exact same surface chemistry, similar zeta potential, and small size, the altered and enlarged hydrophobic component within the amphiphilic dendrimer led to enhanced stability of the self-assembled nanomicelles, with prolonged circulation time and massive accumulation in the liver. This study reveals that even structural alteration within the interior of nanomicelles can dramatically impact biodistribution profiles. This finding highlights the deeper complexity of rational design for nanomedicine and the need to consider factors other than surface charge and chemistry, as well as size, all of which significantly impact the biodistribution of self-assembling nanosystems.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142857409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xi Liao, Meng-Han Bai, Yu-Wei Liu, Yu-Qing Wei, Jun-Yang Wang, Zhi-Guo Wang, Rui Hong, Ju-Xiang Gou, Jia-Zhuang Xu, Zhong-Ming Li, Ka Li
{"title":"Mitigating intubation stress, mucosa injury, and inflammatory response in nasogastric tube intubation <i>via</i> suppression of the NF-κB signaling pathway by engineering a hydration lubrication coating.","authors":"Xi Liao, Meng-Han Bai, Yu-Wei Liu, Yu-Qing Wei, Jun-Yang Wang, Zhi-Guo Wang, Rui Hong, Ju-Xiang Gou, Jia-Zhuang Xu, Zhong-Ming Li, Ka Li","doi":"10.1039/d4tb01171f","DOIUrl":"10.1039/d4tb01171f","url":null,"abstract":"<p><p>Nasogastric tube (NGT) intubation is a common yet critical clinical procedure. However, complications arising from tube friction result in awful pain and morbidity. Here, we report a straightforward surface modification of slender NGT utilizing highly hydrated micelles that were composed of hyaluronic acid and Pluronic. The strong intermolecular hydrogen bonding facilitated the assembly of the micelles on NGT <i>via</i> a one-step dip coating process. The micelle coating conferred excellent hydrophilic, lubrication, anti-protein adhesive, and biocompatible properties. The <i>in vivo</i> efficacy of the micelle coating in alleviating catheterization irritation and mucosal injury was demonstrated using an NGT intubation model of rabbits. More importantly, compared to the paraffin oil coating (the current clinical means), the micelle coating possessed superior capability to reduce the inflammatory reaction caused by NGT intubation. The underlying mechanism was attributed to the suppression of the TLR4-IKBα-NF-κB inflammatory signaling pathway. This work provides a promising solution for developing lubricant medical coatings.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rationally designed protein A surface molecularly imprinted magnetic nanoparticles for the capture and detection of <i>Staphylococcus aureus</i>.","authors":"Kritika Narula, Soumya Rajpal, Snehasis Bhakta, Senthilguru Kulanthaivel, Prashant Mishra","doi":"10.1039/d4tb00392f","DOIUrl":"10.1039/d4tb00392f","url":null,"abstract":"<p><p><i>Staphylococcus aureus</i> (<i>S. aureus</i>), a commensal organism found on the human skin, is commonly associated with nosocomial infections and exhibits virulence mediated by toxins and resistance to antibiotics. The global threat of antibiotic resistance has necessitated antimicrobial stewardship to improve the safe and appropriate use of antimicrobials; hence, there is an urgent demand for the advanced, cost-effective, and rapid detection of specific bacteria. In this regard, we aimed to selectively detect <i>S. aureus</i> using surface molecularly imprinted magnetic nanoparticles templated with a well-known biomarker protein A, specific to <i>S. aureus</i>. Herein, a highly selective surface molecularly imprinted polymeric thin layer was created on ∼250 nm magnetic nanoparticles (MNPs) through the immobilization of protein A to aldehyde functionalized MNPs, followed by monomer polymerization and template washing. This study employs the rational selection of monomers based on their computationally predicted binding affinity to protein A at multiple surface residues. The resulting MIPs from rationally selected monomer combinations demonstrated an imprinting factor as high as ∼5. Selectivity studies revealed MIPs with four-fold higher binding capacity (BC) to protein A than other non-target proteins, such as lysozyme and serum albumin. In addition, it showed significant binding to <i>S. aureus</i>, whereas negligible binding to other non-specific Gram-negative, <i>i.e. Escherichia coli</i> (<i>E. coli</i>), <i>Pseudomonas aeruginosa</i> (<i>P. aeruginosa</i>), and Gram-positive, <i>i.e. Bacillus subtilis</i> (<i>B. subtilis</i>), bacteria. This MIP was employed for the capture and specific detection of fluorescently labeled <i>S. aureus.</i> Quantitative detection was performed using a conventional plate counting technique in a linear detection range of 10<sup>1</sup>-10<sup>7</sup> bacterial cells. Remarkably, the MIPs also exhibited approximately 100% cell recovery from milk samples spiked with <i>S. aureus</i> (10<sup>6</sup> CFU mL<sup>-1</sup>), underscoring its potential as a robust tool for sensitive and accurate bacterial detection in dairy products. The developed MIP exhibiting high affinity and selective binding to protein A finds its potential applications in the magnetic capture and selective detection of protein A as well as <i>S. aureus</i> infections and contaminations.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":"5699-5710"},"PeriodicalIF":0.0,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140961110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Looking back, moving forward: protein corona of lipid nanoparticles.","authors":"Yue Gao, Yeqi Huang, Chuanyu Ren, Peiwen Chou, Chuanbin Wu, Xin Pan, Guilan Quan, Zhengwei Huang","doi":"10.1039/d4tb00186a","DOIUrl":"10.1039/d4tb00186a","url":null,"abstract":"<p><p>Lipid nanoparticles (LNPs) are commonly employed for drug delivery owing to their considerable drug-loading capacity, low toxicity, and excellent biocompatibility. Nevertheless, the formation of protein corona (PC) on their surfaces significantly influences the drug's <i>in vivo</i> fate (such as absorption, distribution, metabolism, and elimination) upon administration. PC denotes the phenomenon wherein one or multiple strata of proteins adhere to the external interface of nanoparticles (NPs) or microparticles within the biological milieu, encompassing <i>ex vivo</i> fluids (<i>e.g.</i>, serum-containing culture media) and <i>in vivo</i> fluids (such as blood and tissue fluids). Hence, it is essential to claim the PC formation behaviors and mechanisms on the surface of LNPs. This overview provided a comprehensive examination of crucial aspects related to such issues, encompassing time evolution, controllability, and their subsequent impacts on LNPs. Classical studies of PC generation on the surface of LNPs were additionally integrated, and its decisive role in shaping the <i>in vivo</i> fate of LNPs was explored. The mechanisms underlying PC formation, including the adsorption theory and alteration theory, were introduced to delve into the formation process. Subsequently, the existing experimental outcomes were synthesized to offer insights into the research and application facets of PC, and it was concluded that the manipulation of PC held substantial promise in the realm of targeted delivery.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":"5573-5588"},"PeriodicalIF":0.0,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140961079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Liquid exfoliation of molybdenum metallenes for non-inflammatory photothermal therapy of tumors.","authors":"Chenxin Lu, Xiang Huang, Zhaoying Jin, Junwei Deng, Zhengbao Zha, Zhaohua Miao","doi":"10.1039/d4tb00525b","DOIUrl":"10.1039/d4tb00525b","url":null,"abstract":"<p><p>Tissue damage and cell death occurring during photothermal therapy (PTT) for tumors can induce an inflammatory response that is detrimental to tumor therapy. Herein, ultrathin Mo metallene nanosheets with a thickness of <5 nm prepared by liquid phase exfoliation were explored as functional hyperthermia agents for non-inflammatory ablation of tumors. The obtained Mo metallene nanosheets exhibited good photothermal conversion properties and significant reactive oxygen species (ROS) scavenging ability, thus achieving superior cancer cell ablation and anti-inflammatory effects <i>in vitro</i>. For <i>in vivo</i> experiments, 4T1 tumors were ablated while the inflammation-related cytokine levels did not obviously increase, demonstrating that the inflammatory response induced by PTT was inhibited by the anti-inflammatory properties of Mo metallene nanosheets. Moreover, Mo metallene nanosheets depicted good dispersibility and biocompatibility, beneficial for biomedical applications. This work introduces Mo metallenes as promising hyperthermia agents for non-inflammatory PTT of tumors.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":"5690-5698"},"PeriodicalIF":0.0,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140961073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mustafa Tüfekçi, Sena Hamarat, Tuğba Demir Çalışkan, Hatice Ferda Özgüzar, Ahmet Ersin Meydan, Julide Sedef Göçmen, Ebru Evren, Mehmet İlker Gökçe, Hilal Goktas
{"title":"Long-term antifouling surfaces for urinary catheters.","authors":"Mustafa Tüfekçi, Sena Hamarat, Tuğba Demir Çalışkan, Hatice Ferda Özgüzar, Ahmet Ersin Meydan, Julide Sedef Göçmen, Ebru Evren, Mehmet İlker Gökçe, Hilal Goktas","doi":"10.1039/d4tb00311j","DOIUrl":"https://doi.org/10.1039/d4tb00311j","url":null,"abstract":"<p><p>The presence of a variety of bacteria is an inevitable/indispensable part of human life. In particular, for patients, the existence and spreading of bacteria lead to prolonged treatment period with many more complications. The widespread use of urinary catheters is one of the main causes for the prevalence of infections. The necessity of long-term use of indwelling catheters is unavoidable in terms of the development of bacteriuria and blockage. As is known, since a permanent solution to this problem has not yet been found, research and development activities continue actively. Herein, polyethylene glycol (PEG)-like thin films were synthesized by a custom designed plasma enhanced chemical vapor deposition (PE-CVD) method and the long-term effect of antifouling properties of PEG-like coated catheters was investigated against <i>Escherichia coli</i> and <i>Proteus mirabilis</i>. The contact angle measurements have revealed the increase of wettability with the increase of plasma exposure time. The antifouling activity of surface-coated catheters was analyzed against the Gram-negative/positive bacteria over a long-term period (up to 30 days). The results revealed that PE-CVD coated PEG-like thin films are highly capable of eliminating bacterial attachment on surfaces with relatively reduced protein attachment without having any toxic effect. Previous statements were supported with SEM, XPS, FTIR spectroscopy, and contact angle analysis.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140961074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A dual-color ESIPT-based probe for simultaneous detection of hydrogen sulfide and hydrazine.","authors":"Qian Gong, Youbo Lai, Weiying Lin","doi":"10.1039/d4tb00318g","DOIUrl":"https://doi.org/10.1039/d4tb00318g","url":null,"abstract":"Hydrogen sulfide (H2S) and hydrazine (N2H4) are toxic compounds in environmental and living systems, and hydrogen sulfide is also an important signaling molecule. However, in the absence of dual-color probes capable of detecting both H2S and N2H4, the ability to monitor the crosstalk of these substances is restricted. Herein, we developed an ESIPT-based dual-response fluorescent probe (BDM-DNP) for H2S and N2H4 detection via dually responsive sites. The BDM-DNP possessed absorbing strength in the detection of H2S and N2H4, with a large Stokes shift (156 nm for H2S and 108 nm for N2H4), high selectivity and sensitivity, and good biocompatibility. Furthermore, BDM-DNP can be utilized for the detection of hydrogen sulfide and hydrazine in actual soil, and gaseous H2S and N2H4 in environmental systems. Notably, BDM-DNP can detect H2S and N2H4 in living cells for disease diagnosis and treatment evaluation.","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":"43 35","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140966082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}