Gait & posture最新文献

筛选
英文 中文
Alteration of gait characteristics in patients with adult spinal deformity 成人脊柱畸形患者步态特征的改变
Gait & posture Pub Date : 2023-09-01 DOI: 10.1016/j.gaitpost.2023.07.107
Stephanie Huysmans, Rachel Senden, Eva Jacobs, Paul Willems, Rik Marcellis, Mark van den Boogaart, Kenneth Meijer, Paul Willems
{"title":"Alteration of gait characteristics in patients with adult spinal deformity","authors":"Stephanie Huysmans, Rachel Senden, Eva Jacobs, Paul Willems, Rik Marcellis, Mark van den Boogaart, Kenneth Meijer, Paul Willems","doi":"10.1016/j.gaitpost.2023.07.107","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.07.107","url":null,"abstract":"Patients with Adult Spinal Deformity(ASD) have distorted spinal alignment altering their gait pattern [1–3]. However, the deformity may differ between patients previously known with adolescent idiopathic scoliosis(AIS) and ‘de novo’ or degenerative lumbar scoliosis. AIS patients often have normal sagittal alignment on static radiographs, but display postural malalignment in frontal plane [4], while DSc patients experience sagittal malalignment [2,3,5]. The purpose of this project is to compare spatiotemporal parameters(SPT) and 3D trunk kinematic waveforms of both adult patients with symptomatic idiopathic scoliosis(ISc) and adult ‘de novo’ scoliosis(DSc) patients with controls during walking. Are SPT and 3D trunk kinematic waveforms of ISc and DSc patients different from matched controls during walking? ASD patients(n=50) scheduled for long-segment spinal fusion surgery were included and divided into an ISc(n=24, median(Q1-Q3) age 20(19-27) years, leg length 0.9(0.85-0.93) m, BMI 23.1(20.7-26.7) kg/m2), and a DSc(n=26, median(Q1-Q3) age 60.5(55-66) years, leg length 0.89(0.83-0.93) m, BMI 28.1(25.1-30.1) kg/m2) group. Each patient was matched to an age-, gender-, weight- and height asymptomatic healthy control. Gait was measured while walking at comfortable speed on an instrumented treadmill with 3D motion capture system surrounded by a 180° projection screen displaying a virtual environment. The human body lower limb model with trunk markers was used[6]. 250 steps were recorded and averages over all measured steps per individual were used for analyses. SPT were presented as median(interquartile range). Independent t-test or Mann-Whitney U test was used to compare the patients with their control group. Statistical Parametric Mapping(independent t-test) was used to compare 3D trunk kinematics between the groups. Patients with ISc walked with comparable SPT to controls, whereas patients with DSc walked significantly slower(0.99(0.73-1.14) vs 1.30(1.13-1.39) m/s) with lower cadence (108.4(101.8-113.3) vs 118.3 (111.3-122.8) steps/min), smaller (1.08(0.84-1.28) vs 1.29(1.21-1.37) m) but wider steps (20(18-24) vs 16(14-20) cm), and increased stride- (1.11(1.07-1.18) vs 1.02(0.98-1.08) s), stance- (0.70(0.66-0.76) vs 0.61(0.58-0.66) s), and double support time (0.14(0.12-0.17) vs 0.11(0.09-0.13) s). Compared to their matched controls, DSc patients showed significantly increased anterior trunk tilt during the whole gait cycle, while ISc patients walked with significantly increased trunk lateroflexion during stance(0-52% gait cycle; Fig. 1). Both DSc and ISc patients had comparable trunk rotation compared to controls(Fig. 1). Fig. 1. 3D Trunk kinematic waveforms. Patients in green andcontrols in grey. Statistical Parametric Mapping statistics are presented.Download : Download high-res image (137KB)Download : Download full-size image ISc and DSc patients show different gait alterations compared to controls. ISc patients show decreased trunk lateroflexion","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135298699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomechanical evaluation of sitting postural control in infants: A systematic review 婴儿坐姿控制的生物力学评价:系统综述
Gait & posture Pub Date : 2023-09-01 DOI: 10.1016/j.gaitpost.2023.08.022
Maria Gkaraveli, Theofani Bania, Pavlos Morfis, Eirini Grammatopoulou, Vasiliki Sakellari
{"title":"Biomechanical evaluation of sitting postural control in infants: A systematic review","authors":"Maria Gkaraveli, Theofani Bania, Pavlos Morfis, Eirini Grammatopoulou, Vasiliki Sakellari","doi":"10.1016/j.gaitpost.2023.08.022","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.08.022","url":null,"abstract":"","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135298701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Muscle quality: Intramuscular fat, collagen fibres, and mechanical properties in the triceps surae 肌肉质量:肌内脂肪、胶原纤维和三头肌表面的机械特性
Gait & posture Pub Date : 2023-09-01 DOI: 10.1016/j.gaitpost.2023.07.264
Zhongzheng Wang, Francesco Cenni, Iida Laatikainen-Raussi, Taija Finni, Ruoli Wang
{"title":"Muscle quality: Intramuscular fat, collagen fibres, and mechanical properties in the triceps surae","authors":"Zhongzheng Wang, Francesco Cenni, Iida Laatikainen-Raussi, Taija Finni, Ruoli Wang","doi":"10.1016/j.gaitpost.2023.07.264","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.07.264","url":null,"abstract":"Skeletal muscle architecture provides valuable insights for individuals with neuromuscular diseases, such as cerebral palsy (CP) [1]. Yet, to have a comprehensive view of muscle remodelling and better-informed clinical treatments, muscle quality (i.e. intramuscular fat, collagen fibres, and mechanical properties) should also be explored [2]. This comprehensive view can be achieved in a non-invasive image-based manner by combing magnetic resonance imaging (MRI) and shear wave elastography (SWE). What is the relationship between intramuscular fat fraction or T2 relaxation time and muscle mechanical properties? One individual with CP (13 years, male, GMFCS I) and four typically developing (TD, 17.3±7.9 years, 4 females) peers were enrolled in the study. Medial gastrocnemius (MG), lateral gastrocnemius (LG), and soleus (SOL) were assessed in neutral position (middle position between maximal dorsiflexed and plantarflexed position; CP -15.0°, TD -16.3±6.3°), while participants were laying prone with knee extended. SWE (Aixplorer, Supersonic Imagine) was recorded for MG and LG at mid-muscle belly, for SOL distally below the LG muscle-tendon junction. Shear modulus was estimated by means of an open-source software (ELASTOGUI, University of Nantes). Fat fraction and T2 relaxation times were estimated from modified Dixon and T2 mapping sequence using a 3.0-Tesla MR scanner (Ingenia CX, Philips Healthcare) at the same ankle position as SWE measurements. The intramuscular fat fraction was calculated based on 2-point fat-water separation [3]. T2 relaxation time is a quantitative parameter indicating collagen fibres content [4]. The correlation between shear modulus and fat fraction / T2 relaxation time was evaluated using linear correlation coefficient. Overall, the individual with CP showed higher muscle shear moduli than TD peers (Figure A) in all three muscles. The individual with CP had a similar fat content in MG and LG but higher fat content in SOL than TD peers (Figure B&F). Regarding the collagen fibres, the average T2 relaxation time for all three muscles were similar in both groups (Figure C). Overall, the correlation between muscle shear modulus and fat fraction / T2 relaxation time was weak (R=0.24 for fat fraction, R=-0.10 for T2 relaxation time, Figure D&E). Figure. (A-C) Average shear modulus, fat fraction, and T2 relaxation time. (D-E) Correlation between shear modulus and fat fraction / T2 relaxation time. The scatter points mean the imaging parameter and related shear modulus for all subjects. (F-G) Sample fat fraction and T2 maps. Download : Download high-res image (178KB)Download : Download full-size image This study is a first attempt to comprehensively analyze muscle quality in CP by combining MRI and SWE. It confirms the increased muscle fat fraction in CP [5], whilst no difference for T2 relaxation time was observed. The correlation results suggested higher passive muscle stiffness with higher fat content. These preliminary results nee","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135298837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selective motor control may be associated with the single support time of gait and single limb standing time in cerebral palsy 选择性运动控制可能与脑瘫患者单步支撑时间和单肢站立时间有关
Gait & posture Pub Date : 2023-09-01 DOI: 10.1016/j.gaitpost.2023.07.188
Yunus Ozdemir, Nazif Ekin Akalan, Yener Temelli
{"title":"Selective motor control may be associated with the single support time of gait and single limb standing time in cerebral palsy","authors":"Yunus Ozdemir, Nazif Ekin Akalan, Yener Temelli","doi":"10.1016/j.gaitpost.2023.07.188","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.07.188","url":null,"abstract":"The Selective Motor Control Assessment of the Lower Extremity (SCALE) is a tool used to assess the quality of motor control of the lower extremity in cerebral palsy (CP). Selective motor control (SMC) is known to be associated with balance and some walking alterations, as well as a significant sign for gross motor function (1-3). It is well known that the single limb stance has a strong relationship with the stability in stance which is the main aim of physiotherapy for improving the quality of walking for CP (4). Therefore the aim of this study is to determine the relationship between SMC, single-limb standing (SLS) time and single support time (SST) of gait in CP. Is there any relationship between SMC with SLS time and SST of gait in individuals with CP? In this study, 10 individuals with spastic type diplegics CP (mean age: 12,7±5,86) were included and bilateral limbs (n:20) were evaluated. Inclusion criteria were GMFCS level I or II, walk 10 meters without assistive device. Patients who had undergone surgery or had botulinum toxin injections in the last 6 months were excluded. The Selective Control Assessment of the Lower Extremity (SCALE) was performed on the hip (S1), knee (S2), subtalar (S3), ankle (S4) and toes (S5) joint for SMC. In addition, the total foot score (TFS) was calculated by summing the subtalar, ankle and toe joint scores; and the total score (TS) is calculated by summing all joints. Independent SLS score of the Gross Motor Function Measure was applied (three point scale). The interested gait parameters of each individual were analyzed with a pedobarography (Win-track, Balma, France). The SST was normalized by dividing stance time. For each parameter, 3 averaged trials were included. Pearson and Spearman’s correlation with Cohen's classification were used for statistical analysis (5). S3, TFS and TS had a strongly positive correlation with SLS score. There was a moderate positive correlation between S5 and SST (Table 1). Download : Download high-res image (207KB)Download : Download full-size image Strong positive correlation of total foot and total scores on SCALE test with single limb stance may show that improving total SMC, especially on subtalar joints, may increase the time of independent standing on one leg. Although only SMC at toes has the moderate level correlation with SST which is also the parameter related with stability in stance phase (4). Therefore improving motor control on toe flex-extension may have a great potential on increasing stance phase stability for CP. It is worthwhile to design randomized control studies with a large number of participants to analyze the relationship of improving SMC and stability in the stance phase by 3D gait analysis in the future.","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135298851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Muscle activity of upper extremity during the is tennis forehand overhead smash: Experimental VS musculoskeletal modeling 网球正手顶扣球时上肢肌肉活动:实验VS肌肉骨骼模型
Gait & posture Pub Date : 2023-09-01 DOI: 10.1016/j.gaitpost.2023.07.162
Sheida Shourabadi Takabi, Meroeh Mohammadi, Reza Najarpour
{"title":"Muscle activity of upper extremity during the is tennis forehand overhead smash: Experimental VS musculoskeletal modeling","authors":"Sheida Shourabadi Takabi, Meroeh Mohammadi, Reza Najarpour","doi":"10.1016/j.gaitpost.2023.07.162","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.07.162","url":null,"abstract":"One of the main parts of body that play key role in tennis matches is shoulder complex [1,2]. There are many joints and muscles caused shoulder to be complex [2–5]. Evaluation of the muscle activities is necessary to improve safety and performance [5]. The fundamental challenge for evaluation of muscle activity is measuring by EMG due to limitation of equipment, expensiveness, and inaccessibility to deep muscles [6–8]. Therefore, it is important to use musculoskeletal modeling to evaluate muscle activation [9–12]. On the other hand, there have been different musculoskeletal models with different joint definitions and the DOF [13,14]. Thus, the goal of this study was to validate the muscle activation output from different model by EMG data for the TFOS. How does muscle activity from experimental and modeling valuations change during the tennis forehand overhead smash (TFOS)? Twenty-five professional tennis athletes (Mass: 69.3±7.5 kg, Heights: 178±9.3 cm, Age: 29.5±7.5 years). The kinematics of markers were recorded by a 12 high-speed motion captures (Vicon, Oxford, UK, 100 Hz). The shoulder model of Holzbaur et al. [15–17] selected as base model and three version of models extracted based on the DOF: (5 DOF) a model with only three rotational DOF between humerus and trunk Glenohumeral joint, (11 DOF) a model with three rotational DOF for Scapulothoracic joint, Acromioclavicular joint, and Glenohumeral joint, (Stanford) a model with coupled motions for scapula, clavicle, and humerus. All models include two DOF for radio-ulna and elbow joints. After scaling the models, the inverse kinematics, inverse dynamics, and static optimization tools were applied to compute kinematics, kinetics, and muscle activity variables. The EMG activity in selective muscles was measured by the Myon wireless EMG system with a sampling frequency of 1000 Hz [18]. The average RMS of differences between each model and EMG (RMSE) over the muscles were 0.27±0.10, 0.29±0.12, and 0.22±0.10 for 5DOF, Stanford, and 11DOF models, respectively. Furthermore, the average Pearson's correlation coefficient over the muscles were 0.89±0.08, 0.88±0.09, and 0.93±0.60 for 5DOF, Stanford, and 11DOF models, respectively. The minimum RMS error (0.22±0.10) and maximum Pearson's correlation coefficient (0.93±0.60) were observed for 11 DOF model. Table 1: Muscle activity comparison between musculoskeletal simulation outputs (from three different models) and experimental data (EMG) including the RMSE, and Pearson's correlation coefficient for the TFOS movement.Download : Download high-res image (181KB)Download : Download full-size image According to the results, the 11 DOF model are more similar to the experimental (EMG) based on both RMSE and Pearson's correlation coefficient. Although the simulation results of some muscles were significantly different from the experimental results. Therefore, the alternative method to quantify muscle activation is musculoskeletal modeling. Moreover, the best mode","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135299042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Does a single segment trunk model adequately reveal trunk movements for a simple reaching and grasping movement? 单节躯干模型是否充分揭示了简单的伸手和抓握动作的躯干运动?
Gait & posture Pub Date : 2023-09-01 DOI: 10.1016/j.gaitpost.2023.07.216
Maria B. Sánchez, Andy Sanderson, Emma Hodson-Tole
{"title":"Does a single segment trunk model adequately reveal trunk movements for a simple reaching and grasping movement?","authors":"Maria B. Sánchez, Andy Sanderson, Emma Hodson-Tole","doi":"10.1016/j.gaitpost.2023.07.216","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.07.216","url":null,"abstract":"The trunk represents almost 50% of the total mass of a person [1] and, because it comprises multiple segments, has a large range of motion [2]. Trunk posture and movement are important in the execution of activities of daily living (ADL), especially for those related with arm function [3]. However, in movement analysis, the trunk is usually defined as a single rigid, cylindrical segment between the shoulders and pelvis. This oversimplification ignores the large movement potential the trunk has [2], and therefore does not enable a complete evaluation of trunk movement. Does a single segment trunk model adequately reveal trunk movements for a simple reaching and grasping movement? The University Ethics Committee (ref:47565) approved the project. Eleven people (7 male; (mean ±SD) age: 27.82 ±3.18years, height: 1.74 ±0.11 m; weight: 75.0 ±12.7 kg) participated after signing the consent form. An upper-body marker-set was used: left/right acromion, iliac-crest, ASIS; manubrium, S1; five inverted “L” clusters of 3 markers: two 2.5 cm lateral of C7, T3, T7, T11 and L3, with the third marker on the long end of the “L” with the length adjusted based on the participant’ s size. These defined a single-segment-trunk (acromia to iliac-crests), and upper-, mid- and lower-thoracic, and upper- and lower-lumbar segments (multi-segment-trunk). Participants were asked to stand from a hight-adjustable bench, walk to a low table and lean to collect a mug before returning to the bench. Motion capture data were recorded (100 Hz), tracked, and processed. Segmental angles (in relation to the absolute coordinate system) were estimated for the “leaning to collect” section of each trial. The total displacement in each plane and a combined 3D movement (sum of the three planes) of the single-segment-trunk and of the multi-segment-trunk compared with a paired sample t-test. Table 1 shows the difference in the combined 3D movement for the single-segment-trunk when compared to the multi-segment-trunk (t = 27.95, p<.01) and for each of the planes of movement (t = 18.21, 11.19, 14.15, p<.01, for sagittal, frontal and horizontal). The standardised mean difference was considered very large (8.07 ±8.06).Download : Download high-res image (82KB)Download : Download full-size image This simplified approach identified the scale of additional information that could be gained from a multi-segment-trunk. Further exploration should focus on understanding if the amount of movement in a multi-segment-trunk vs single-segment-trunk is of a very different magnitude; it should also look specifically at where are the more important differences. Additional development might focus on understanding the best representation of the trunk movement when assessing ADL in clinical populations. I would say this phrasing is better, calling your approach very simple is an insult to your work, calling it simplified indicates that you’re just presenting in a simple way for them.","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135299043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of cushioned footwear for children with obesity based on gait dynamics and motion simulation 基于步态动力学和运动模拟的肥胖儿童减震鞋设计
Gait & posture Pub Date : 2023-09-01 DOI: 10.1016/j.gaitpost.2023.07.276
Yihong Zhao, Shiyang Yan, Ruoyi Li, Luming Yang, Bi Shi
{"title":"Design of cushioned footwear for children with obesity based on gait dynamics and motion simulation","authors":"Yihong Zhao, Shiyang Yan, Ruoyi Li, Luming Yang, Bi Shi","doi":"10.1016/j.gaitpost.2023.07.276","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.07.276","url":null,"abstract":"Obesity will cause changes in foot structure and plantar pressure distribution, increasing the risk of foot pain and injury [1]. Functional footwear (outsole) is an essential way to distribute the local plantar pressure for children with obesity. However, the traditional design and research of outsoles need to go through the whole process of design, molding, production, fitting experiments, and so on, which is a long time and high-cost consumption. How to obtain the optimal design scheme of cushioned footwear for children with obesity through finite element analysis? Based on the database of foot morphology of children with obesity, a 3D outsole model was established, and the arch height of the outsole was set as 30%, 60%, and 100% of the arch height of children with obesity. Based on the anthropometric data, biomechanical data, and CT imaging data of children with obesity, a biomechanical simulation model of the lower limb musculoskeletal system and a finite element model of the foot were established. To verify the validity of the finite element model, the simulation results of the maximum principal stress of children with obesity during walking were compared with the actual measured data.The structure of the outsole is preliminarily constructed in Solidworks. The arch height (30%, 60%, and 100%) of the outsole was set to simulate the support at the arch. The foot-outsole-ground structure was assembled, and the pressure on the foot-shoe interface was simulated in ANSYS Workbench, to explore the dispersion effect of different arch heights. After obtaining the best design scheme, the actual relief effect of the outsoles was tested through the try-on trials. The simulation results showed that the 60% arch height support could effectively achieve the dispersion of plantar pressure in the plantar toe area and heel area. The try-on results showed that, when wearing the cushioned footwear, the peak pressure in the central forefoot and heel were relieved by 36.8% and 43.8%, respectively, from176.5 kPa and 310.9 kPa to 111.6 kPa and 174.7 kPa. Fig. 1 (a) 3D model of coushioned outsole. (b) Finite element analysis and verfication results. (c) Construction and assembly of the outsole structure. (d) The finite element analysis results between foot and outsole with the 60% arch height. (e) The cushioned footwear. (f) The cushioned effects of the outsole in the try-on experiments.Download : Download high-res image (244KB)Download : Download full-size image Through finite element analysis and fitting verification test, we found that when the arch height of the outsole is 60% of the arch height of the children with obesity, the decompression function is the best, which can transfer the pressure of the front palm and heel to the arch and toe. Finite element analysis makes functional shoe development process more efficient.","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135299048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
There is life outside the gait lab: Effectiveness of a self-organising neural map for recognising 24/7 activities of daily living 步态实验室之外还有生活:一种自组织神经地图的有效性,用于识别日常生活中的24/7活动
Gait & posture Pub Date : 2023-09-01 DOI: 10.1016/j.gaitpost.2023.08.018
Gabor Barton, Jacob Beesley, Jasmine Milnes, Gabriela Czanner, Lynne Boddy
{"title":"There is life outside the gait lab: Effectiveness of a self-organising neural map for recognising 24/7 activities of daily living","authors":"Gabor Barton, Jacob Beesley, Jasmine Milnes, Gabriela Czanner, Lynne Boddy","doi":"10.1016/j.gaitpost.2023.08.018","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.08.018","url":null,"abstract":"","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135299061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reliability of 3D kinematic recording of jaw and head movements 下颌和头部运动的三维运动学记录的可靠性
Gait & posture Pub Date : 2023-09-01 DOI: 10.1016/j.gaitpost.2023.07.171
Evelina Nilsson, Helena Grip, Catharina Österlund
{"title":"Reliability of 3D kinematic recording of jaw and head movements","authors":"Evelina Nilsson, Helena Grip, Catharina Österlund","doi":"10.1016/j.gaitpost.2023.07.171","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.07.171","url":null,"abstract":"The jaw and neck sensorimotor systems are functionally integrated during jaw functions1,2. The jaw border movements include maximum opening, laterotrusion to left and right, protrusion and retrusion3. Three-dimensional (3D) kinematic movement analysis provide data to distinguish natural movement patterns from those adapted to pain and dysfunction. Therefore, the reliability of kinematics is crucial to assess movement variability of integrated jaw-neck motor capacity. Can we ensure a high accuracy of the novel method intended to use for estimation of maximum jaw movements and geometric characterization (area and volume)? Is there a high test-retest reliability and intraindividual consistency for a group of healthy participants performing maximum jaw movements? 3D kinematic analysis was used for movement recognition. The first part included three glass beakers of different sizes, with known volumes and the cross-sectional area was estimated with a geometrical algorithm. The percentage deviation between target values and estimated values was calculated and to test the agreement a linear regression was made. The second part included 17 healthy participants (25.37 years ± 2.36). Maximum jaw movements were performed in a pre-determined movement pattern to track reflective marker positions of jaw and head segments. Movement amplitudes, magnitudes, areas, and volumes were analyzed. Intraclass correlation coefficient (ICC)4 estimates and Bland-Altman plots5 were used to assess test – retest reliability. Coefficient of variation (CV)6 tested the within session reliability. Preliminary results for the beakers showed a total percentage deviation from the target area and volume of 0.03 (SD 0.59) and 0.72 (SD 0.81), respectively. The linear regression showed a linear agreement between estimated and target value with R2=0.99. Preliminary results of test – retest reliability per movement outcome variable showed moderate to excellent reliability according to ICC-classification4. The limits of agreement between test and retest session presented with Bland-Altman plots showed good agreement between first and second measurement. The intra individual movement variability expressed as CV showed good repeatability. Jaw movements including the horizontal directions displayed widest ICC 95% confidence interval and highest CV values. (Fig. 1. Coefficient of variation - box plots).Download : Download high-res image (67KB)Download : Download full-size image This study addressed reliability of kinematic parameters of maximum jaw movements and its geometrics. The preliminary main findings indicate high accuracy of the novel method for estimations of volume and area. The agreement between sessions was considered good as well as consistency in repeated movements. Moreover, the more complex movement, the lower reliability and higher variability was seen. In future research of jaw-neck motor function the presented method is suggested to enables valid analysis of jaw movement perf","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135299063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of perturbation on hip kinematics of transtibial amputees 摄动对经胫截肢者髋关节运动学的影响
Gait & posture Pub Date : 2023-09-01 DOI: 10.1016/j.gaitpost.2023.07.229
Nimet Sermenli Aydın, İlke Kurt, Halit Selçuk, Sinem Salar, Sezer Ulukaya, Hilal Keklicek
{"title":"The effect of perturbation on hip kinematics of transtibial amputees","authors":"Nimet Sermenli Aydın, İlke Kurt, Halit Selçuk, Sinem Salar, Sezer Ulukaya, Hilal Keklicek","doi":"10.1016/j.gaitpost.2023.07.229","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.07.229","url":null,"abstract":"Gait adaptation to perturbations is essential for safe interaction with the physical environment and therefore it is important to understand how people with lower-limb amputation adapt their gait to changing conditions (1). Previous studies tried to find some deviation patterns and understand the kinematic strategies of amputee's gait (2). However, there is limited information available on the hip kinematics of amputees during gait and there is no study has yet investigated the effect of the perturbation on the hip kinematics of amputees. How does unpredictable continuous perturbation during gait affect the hip kinematics of unilateral transtibial amputees? Individuals with unilateral trans-tibial amputations and using prostheses with an active vacuum plus carbon foot combination were included in to study. Kinematic data of the hip were collected from 11 amputees and 10 healthy controls during walking on two different ground conditions. Participants walked at least 512 steps at their preferred speed on a motorized treadmill’s (ReaxRun Pro) flat ground condition and then the gait analysis was repeated on a perturbed (5% unpredictable perturbation) ground condition. RehaGait- Pro system was used for evaluation of the kinematics of the hip(min-max hip angles and variability of the hip min-max angles) during gait. Negative values indicated hip hyperextension, positive values indicated hip flexion. The statistical analysis was performed by pairing the residual limbs of amputees with the non-dominant side of the healthy group (RL side), and the sound limbs with the dominant side of the healthy group (HL side). It was observed that the hip hyperextension angle on the sound limb side was bigger in the amputees than in the control group on flat (d=0.462; p=0.034) and perturbated ground (d=0.584; p=0.007). The effect size was larger on the perturbed ground. There was no difference in the maximum hip angles and variability of max-min hip angles between the groups in both ground conditions (p>0.05). The results showed in Table.Download : Download high-res image (142KB)Download : Download full-size image Amputation-related changes were observed in hip kinematics during walking under both ground conditions. However, this change was more prominent on the perturbated ground. The reason for the higher hip hyperextension values in amputees is thought to be due to their efforts to compensate for the ankle (exp. strong plantar flexion) movements. On the unpredictable perturbation ground, the limitation of ankle movements, which is one of the first adaptive mechanisms in adaptation to the ground (exp. subtalar rotations plus plantarflexion), may have made the situation more evident. Future studies may focus on the effect of gait training on perturbed surfaces on gait kinematics, which is an indicator of adaptation to variable conditions.","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135297885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信