{"title":"The effects of accelerometer sensor position on freezing gait ratio parameters","authors":"Slavka Viteckova, Lucie Horakova, Tereza Duspivova, Evžen Růžička, Zoltan Szabo, Radim Krupicka","doi":"10.1016/j.gaitpost.2023.07.170","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.07.170","url":null,"abstract":"Freezing of gait (FoG) is an episodic gait pattern characterised by the inability to step that occurs on initiation or turning while walking for those with Parkinson’s disease (PD) [1]. This phenomenon is one of the most disabling yet poorly understood symptoms. It has been shown that tasks requiring bilateral limb coordination are the most likely to elicit FoG in the laboratory. Among the most promising tasks are stepping in place [2], walking and turning [3], and turning in place[4]. Previously, the Freezing Ratio parameter (FoG-ratio) has been developed to objectively measure freezing severity[5]. Usually, a lower limb acceleration signal in an antero-posterior direction measured by an inertial sensor has served as the source for its calculation[6,7]. Growing interest in single sensor utilisation in gait analysis brings up the question of whether any sensor other than the foot can measure freezing severity via FoG-ratio. Is FoG-ratio computed from a sensor located on the sternum or lower back comparable to the foot FoG-ratio during a walking turn? We included 34 Parkinson disease patients (21 males, 13 females), mean age 59.0 (SD 12.3) years in the study. All subjects performed an instrumented extended Timed Up&Go Test (TUG) wearing six synchronised inertial measurement units (Opals, APDM, USA) fitted via elastic straps. Sensors were located at the sternum, lower back, both wrists and feet. The turn subtask was automatically extracted from each TUG measurement. The FoG-ratio was calculated from antero-posterior acceleration acquired by a right foot sensor, left foot sensor, sternum (S) sensor, and lumbar (L) sensor. Depending on turn direction (left or right), each foot was denoted as the inner foot (IF) and outer foot (OF). Thus, four FoG-ratios (FoG_S-ratio, FoG_L-ratio, FoG_IF-ratio, FoG_OF-ratio) were obtained for each subject. The Kolmogorov-Smirnov test rejected the null hypothesis, i.e. data was not normally distributed. The Friedman test was employed for comparison of FoG-ratios. Posthoc pairwise comparisons were performed by Wilcoxon signed rank test (alpha level set to 0.05). Next, the Spearman correlation coefficient was calculated for all FoG-ratio pairs. The Friedman test revealed that the FoG-ratios from different sensor locations are statistically different (p<0.001). Pairwise tests showed statistically significant differences between the FoG_S-ratio and FoG_L-ratio (p<0.001), the FoG_S-ratio and FoG_IF-ratio (p=0.006), the FoG_L-ratio and FoG_IF-ratio (p=0.001), and the FoG_L-ratio and FoG_OF-ratio (p=0.001). The correlation analysis detected no significant relationship, Fig. 1.Download : Download high-res image (232KB)Download : Download full-size image Taking into account the results of location comparisons and their mutual relationships, no sensor seems to be a suitable alternative to foot sensors for freezing ratio calculation. However, additional analyses need to be performed before rejecting the possibility of employing o","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":"161 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135298838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gait & posturePub Date : 2023-09-01DOI: 10.1016/j.gaitpost.2023.07.111
Narges Jahantigh Akbari, Mohammad Yousefi, Nahid Tahan
{"title":"Comparing the effects of multi-session cerebellar and prefrontal trans-cranial direct current stimulation on postural balance in patients with multiple sclerosis","authors":"Narges Jahantigh Akbari, Mohammad Yousefi, Nahid Tahan","doi":"10.1016/j.gaitpost.2023.07.111","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.07.111","url":null,"abstract":"Multiple sclerosis (MS) is a progressive autoimmune disease, characterized by a destructive inflammatory process in the myelin sheaths (1). Multiple disorders are associated with MS, which typically include muscle weakness, spasticity, cognitive disorder, sensory symptoms, movement disorders, fatigue, and gait disorders (2). Generally, gait and balance disorders are common in patients with MS (3). Approximately 80% of these patients, even in the early stages of disease, show deficits in postural control, which in turn affect their quality of life (3). Therefore, the aim this study was to comparing the effects of multi-session anodal trans-cranial direct current stimulation of cerebellar and dorsolateral prefrontal cortices on postural balance in patients with multiple sclerosis Which area of cerebellum tDCS or prefrontal tDCS will have a greater effect on postural balance in MS patients? In this double-blind randomized controlled trial, 20 patients with multiple sclerosis were randomly divided into two groups: dorsolateral prefrontal cortex (DLPFC) tDCS (n=11) and cerebellum tDCS (n=9). Treatment in both groups consisted of 20 minutes tDCS with 2 mA intensity and 10 minutes’ balance training, for 10 sessions, over four weeks. Dynamic balance was assessed with Berg Balance Scale (BBS), Timed Up and Go test (TUG) and static balance using force plate before and after treatment. In both groups, a significant increase in BBS and a significant decrease in TUG was observed (P <0.05). A significant decrease found in sways path in the anterior-posterior direction and total sway path in the cerebellum group (P <0.05). A significant improvement was found in BBS, sway speed in the anterior-posterior direction, and total sway speed in the cerebellum group compared to the DLPFC group (P <0.05). Findings suggest that tDCS can use in combination with physical therapy to treat balance disorders in MS patients.","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135298843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gait & posturePub Date : 2023-09-01DOI: 10.1016/j.gaitpost.2023.07.267
Michèle Widmer, Alice Minghetti, Jacqueline Romkes, Morgan Sangeux, Cornelia Neuhaus, Bastian Widmer, Elke Viehweger
{"title":"CrossFit® to improve gross motor function and gait in adolescents and young adults with unilateral cerebral palsy: a pilot study","authors":"Michèle Widmer, Alice Minghetti, Jacqueline Romkes, Morgan Sangeux, Cornelia Neuhaus, Bastian Widmer, Elke Viehweger","doi":"10.1016/j.gaitpost.2023.07.267","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.07.267","url":null,"abstract":"Cerebral palsy (CP) is a childhood disability which affects the development of movement and posture, impairs muscle function and muscle strength, and can furthermore negatively impact gait. Recent data shows that not only strength, but also bouts of anaerobic exercise in patients with CP might help to transfer muscle strength into functional capacity (1). This pilot study examined the feasibility and effects of a functional high-intensity exercise intervention (CrossFit®) performed in a group-setting with unilateral CP patients on indicators of daily functionality, including gait. 9 adolescents with unilateral CP (7 males, 2 females, mean age: 16.9 (SD 3.48); GMFCS Level: I-II) participated in the study. The intervention consisted of two weekly supervised training sessions over 12 weeks, which contained progressive resistance training performed with free weights as well as high-intensity aerobic and anaerobic workouts performed through functional movement patterns which were adapted to individual ability and capacity. A 3D-gait analysis, the six-minute walking-test (6MWT), a clinical exam and the Gross Motor Function Measure-66 (GMFM-66) (2) were performed before and after the intervention. Mean differences were calculated with paired t-tests and corresponding 95% confidence intervals. The exercise intervention was not accompanied by any adverse events except light muscle soreness. We measured a significant increase in the GMFM 66 (p = 0.031, mean difference = 2.19 (CI 0.71-3.67)). Furthermore, a non-significant increase in the distance of the 6 MWT (p = 0.09, mean difference = 29.8 m (CI -5.8-65.5)) and the propulsion ratio (p = 0.067, mean difference 5.4% (CI 0.5-11.4%)) of the affected leg was found. No statistically significant changes were found for Gait Profile Score (GPS) (3), spatiotemporal parameters or clinical exam (ankle range of motion, popliteal angle). This pilot study shows that a high-intensity functional training with free weights (CrossFit®) in adolescents with unilateral CP is a safe training method that might effectively improve gross motor function, endurance, and asymmetry in gait. Therefore, the intervention seems to show a transfer into non-task-specific movements of daily life. Based on this pilot study, studies with bigger patient samples and control groups may be performed to detail the effect of high-intensity functional training. Furthermore, this pilot study raises the question to explore the possibilities of more functional tests to measure daily life function by for example using wearable inertial measurement units (IMU).","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":"256 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135298849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of 8-weeks selective training on the peroneus longus and peroneus brevis morphologies","authors":"Yukio Urabe, Satoshi Arima, Oda Sakura, Tsubasa Tashiro, Rami Mizuta, Komiya Makoto, Noriaki Maeda","doi":"10.1016/j.gaitpost.2023.07.252","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.07.252","url":null,"abstract":"Resistance training for the peroneus muscles is important because this muscles undergo morphological changes and functional decline after a lateral ankle sprain. We reported at last year's ESMAC 2022 the possibility of selectively training each muscle by implementing immediate selective interventions for the peloneus long (PL) and peroneus brevis (PB) (Arima et al., 2022). However, it has not been examined whether long-term interventions can selectively train the PL and PB. Does an 8-weeks intervention allow selective training of the PL and PB? Eighteen healthy participants were divided into two task groups that performed two different 3 times a week for 8-weeks tasks: the PL task in which a Thera-Band was placed on the ball of the foot and pushed out from the contact point (n=9), and the PB task in which the Thera-Band was pulled out from the base of the fifth metatarsal (n=9). Muscle cross-sectional area (CSA) at 25% (showing PL) and 75% (showing PB) proximal to the line connecting the fibular head and lateral malleolus measured by an ultrasound system, and PL and PB strength measured using a handheld dynamometer were determined at the beginning of week 1 (baseline) and on the first day of the week following each weekly task. PL and PB strength measured muscle strength during exercise of the same as PL and PB tasks. Two-way ANOVA was used to check for differences in changes in values by the 8-weeks PL and PB tasks. There was significant interaction between groups and measurement weeks for the 25% and 75% CSA, PL and PB strength (p<0.05). Post hoc test showed that the 25% CSA was significantly higher in the PL task between weeks 3 and 8 compared to baseline (p<0.05). The 75% CSA was significantly higher in the PB task compared to baseline for all weeks between weeks 4 and 8 (p<0.05). PL strength was significantly higher in the PL task between weeks 2 and 8 compared to baseline (p<0.05). PB strength was significantly higher in the PB task compared to baseline for all weeks between weeks 3 and 8 (p<0.05). PL muscle activity is increased by the ball of the foot loading, and the PB contributes to ankle eversion compared to the PL. In this study, the 8-week intervention also increased 25% CSA and PL muscle strength in the PL task over time with each passing week, and 75% CSA and PB muscle strength in the PB task. This suggests that an 8-weeks PL and PB tasks probably be useful for long-term selective training of peroneus muscles.","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":"77 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135297888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gait & posturePub Date : 2023-09-01DOI: 10.1016/j.gaitpost.2023.07.122
Yong Kuk Kim, Noah Fehr, Fatemeh Fahimi, Michelle Gwerder, Angela Frautschi, William Taylor, Navrag Singh
{"title":"Age group identification using machine learning and IMU: A comparison of sensor placements","authors":"Yong Kuk Kim, Noah Fehr, Fatemeh Fahimi, Michelle Gwerder, Angela Frautschi, William Taylor, Navrag Singh","doi":"10.1016/j.gaitpost.2023.07.122","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.07.122","url":null,"abstract":"","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135298048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantitative gait analysis of patients with unilateral juvenile osteochondritis dissecans of the knee: Comparison with the contralateral side and controls","authors":"Mathieu Lalumière, Thierry Pauyo, Jean-François Girouard, Reggie Charles Hamdy, Louis-Nicolas Veilleux","doi":"10.1016/j.gaitpost.2023.07.137","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.07.137","url":null,"abstract":"Juvenile osteochondritis dissecans (JOCD) of the knee is a common cause of pain and dysfunction among active children and adolescents [1,2]. JOCD is defined as a pathologic process for which the blood supply to a bone area is disrupted due to excessive loading forces on some parts of the joint, causing the necrosis of the subchondral bone and cartilage [3–5]. In youths with stable JOCD of the knee, conservative management focusing on biomechanical factors and unloading is the standard of care [6]. However, it is not clear how the biomechanical factors, such as the lower limbs kinematics and kinetics during walking, are associated with JOCD [6]. The aim of this project was to identify objective biomechanical outcomes associated with JOCD to better target conservative treatment options. Thirteen (n=13) patients with unilateral medial femoral condyle JOCD and nineteen (n=19) control subjects were evaluated at the SHC-Canada. Three distinct groups were created for comparison: 1) JOCD side, 2) Unaffected contralateral side, 3) Healthy controls. JOCD patients were evaluated before conservative treatment initiation. All participants performed barefoot overground walking at a self-selected speed. Retroreflective markers were placed on specific bony landmarks according to the Plug-In-Gait marker set [7]. A 10-camera motion capture system (VICON) with 4 forceplates (AMTI) were used to collect kinematic and kinetic data. Joint angles and moments at the hip and knee was processed using Nexus 2.12.1 and averaged for three complete gait cycles. For the main outcome measures, peak joint angle and moment in the coronal plane were outputted at the hip and knee. To identify statistical differences between groups (α=0.05), the main outcome measures were compared using paired t-test between JOCD and unaffected groups, and unpaired t-test between JOCD and control groups. Data showed altered knee joint movement patterns for the JOCD side group, with significantly higher peak knee varus angle (vs. unaffected=+2.66°, p=0.002; vs. controls=+2.39°, p=0.02) and varus-thrust angle (vs. unaffected=+1.48°, p=0.02) (Fig. 1B). Data also showed altered kinetics for the JOCD side group, with significantly lower peak hip adduction moment (vs. controls=-0.19 N∙m/kg, p=0.001) and peak knee adduction moment (vs. controls=-0.12 N∙m/kg; p=0.02) (Fig. 1C&D).Download : Download high-res image (116KB)Download : Download full-size image Higher knee motion in the coronal plane for youths with JOCD suggest the presence of medio-lateral knee instability. Also, reduced knee adduction moment in the presence of JOCD suggest compensations at the ipsilateral trunk and hip to reduce medial femoral condyle loading. Potential treatment focusing on knee medio-lateral stability, such as motor control exercises and knee unloading brace, have potential at improving neutral dynamic knee alignment during walking. The current set of data will serve as a method to develop a standardized conservative protocol","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":"371 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135298050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gait & posturePub Date : 2023-09-01DOI: 10.1016/j.gaitpost.2023.07.196
Anna Pennekamp, Mirjam Thielen, Julia Glaser, Leila Harhaus, Ursula Trinler
{"title":"Application of 3D motion analysis to quantify a clinical test method assessing wrist spasticity","authors":"Anna Pennekamp, Mirjam Thielen, Julia Glaser, Leila Harhaus, Ursula Trinler","doi":"10.1016/j.gaitpost.2023.07.196","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.07.196","url":null,"abstract":"Spasticity is a symptom that occurs in patients with acute or chronic damages of the central nervous system [1]. Quantification of such limitations is essential, for example for preoperative decision making. Though, objective measurement methods to assess upper limb (UL) spasticity are poorly applied in clinical practice. Due to the low interrater reliability of subjective scales (modified Ashworth scale (MAS), modified Tardieu scale (MTS) [2,3]), 3D motion analysis and synchronized surface EMG (sEMG) should be used as an alternative method to determine objective parameters. How do the results of the objective sEMG parameters during passive stretch correlate with the subjective values of MAS and MTS? Which differences exist in wrist kinematics and muscle activity during a passive stretch of the wrist flexors between healthy adults and patients with UL spasticity? 11 patients with UL spasticity (39 ± 18 years) and 5 healthy adults (10 arms, 35 ± 9 years) were included. All participants were analysed using 3D motion analysis (Qualisys, U.L.E.M.A [4]) and sEMG (Noraxon) on M. flexor carpi ulnaris and / or M. flexor carpi radialis and M. extensor carpi radialis brevis during passive stretch of the wrist (3 slow (LV) and 3 quick (HV) directed movements). sEMG data were normalised to maximum isometric contraction (MVIC) and examined over a defined period of time (200ms before reaching maximum velocity to 90% of max. extension [5]). The velocity of the passive stretch (30°/s slow, 180°/s fast) was standardized with a metronome. The maximum passive wrist extension, the sEMG parameters (EMGLV and EMGHV) as well as the sEMG difference between LV and HV (EMGchange) were compared between groups (Mann-Whitney-U-Test). MAS and MTS were clinically assessed and correlated with sEMG parameters (Spearman's rank correlation coefficient). Joint angles and sEMG parameters were significantly different between groups (Table 1a). Correlations between sEMG based parameters and the subjective values of MAS and MTS where low and not significant (Table 1b). Table 1: a): Differences between healthy adults and patients, b): Spearman's rank correlation coefficient between subjective Scales (MAS, MTS) and objective Parameters (EMGLV, EMGHV, EMGchange)Download : Download high-res image (74KB)Download : Download full-size image The objective measurement method, which has already been used for the elbow and lower limb, also shows promising results on the wrist. The comparison between healthy adults and spasticity patients clearly shows that the muscular activity of the wrist flexors during their passive stretch is high and velocity dependent in spasticity patients. Interestingly, neither MAS nor MTS values correlate to objective values at the wrist. Wrist flexor spasticity is not only caused by the wrist flexors, but also by the extrinsic finger flexors, which are not yet included in this model.","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135298373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gait & posturePub Date : 2023-09-01DOI: 10.1016/j.gaitpost.2023.07.134
Shavkat Kuchimov, Mehmed Özkan, Adnan Apti, Nazif Ekin Akalan, Burcu Semin Akel, Karsten Hollander
{"title":"Impact of subject’s physical properties on joint biomechanics: Hypermobility alters lower extremity biomechanics during knee-bearing activity","authors":"Shavkat Kuchimov, Mehmed Özkan, Adnan Apti, Nazif Ekin Akalan, Burcu Semin Akel, Karsten Hollander","doi":"10.1016/j.gaitpost.2023.07.134","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.07.134","url":null,"abstract":"Hypermobility is a physical specificity of the subject that refers to an increased range of motion in one or more joints beyond what is considered normal or expected for an individual's age, gender, and body type. The previous studies on hypermobility stated that generalized joint hypermobility (GJH) may cause joint instability and muscle weakness [1]. The knee joint structural integrity and function maintained essentially by the cruciate ligaments. The anterior cruciate ligament (ACL) and the posterior cruciate ligament (PCL) work together to provide stability to the knee joint by preventing excessive movement of the tibia (shin bone) in relation to the femur (thigh bone). The more common ligament injury is ACL injury and non-contact ACL injuries remain a serious problem among athletes [2]. Activities demanding mechanical bearing on the knee joint recommended for classifying an athlete's anterior cruciate ligament injury risk [3]. Some biomechanical factors determined in these tests are associated with future injuries [4]. In order to protect the athlete from injury, it is necessary to determine the causes of biomechanical factors determined by functional tests. The aim of this study is to examine the effects of GJH on Pelvis and lower body joint biomechanics with Single Leg Landing (SLL) test. Does hypermobility alter lower extremity biomechanics? Eight healthy volunteers with no history of musculoskeletal injury or pain participated in this study (mean age: 16.6±4.2). Casual sports participants were divided into two equal groups (control ≤4, hypermobile ≥6) according to the Beighton score which measures GJH [5]. SLL tests were acquired for each subject using 3D motion analysis (6 Vantage 5 Camera, 2 Force Platforms, Vicon Motion Systems Ltd UK). Plug-in-gait model for lower extremity is utilized as marker set that described in the previous studies [4]. Three repetitive tests were evaluated for each leg side. An Independent t-test was used for statistical analysis. Participants with hypermobility exhibited higher peak angles of pelvic external rotation (p=0.01), hip adduction (p=0.03), and knee valgus (p=0.02) during the stance phase of knee-bearing activity (see Table 1). In contrast, peak values of pelvic posterior tilt angle (p=0.03), foot internal progression (p=0.05), and knee flexion moment (p=0.01) were found to be decreased in participants with hypermobility.Download : Download high-res image (113KB)Download : Download full-size image It has been determined that joint hypermobility can lead to alterations in lower extremity biomechanics during SLL test. Increase in peak hip adduction and knee valgus angles lead to both acute (ACL rupture factor) and overuse sport injuries [6]. Further studies are needed to investigate the effects of joint hypermobility using detailed marker set for better quantification of specifically knee joint movement.","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135298378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gait & posturePub Date : 2023-09-01DOI: 10.1016/j.gaitpost.2023.07.269
Jente Willaert, Lena H. Ting, Anja Van Campenhout, Kaat Desloovere, Friedl De Groote
{"title":"Reduced reciprocal inhibition during passive spasticity assessments is related with increased muscle co-activation during perturbations of standing balance","authors":"Jente Willaert, Lena H. Ting, Anja Van Campenhout, Kaat Desloovere, Friedl De Groote","doi":"10.1016/j.gaitpost.2023.07.269","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.07.269","url":null,"abstract":"Children with cerebral palsy (CP) often have balance impairments, but little is known about the relation between joint hyper-resistance (i.e., the most common symptom in spastic CP) and balance impairments (1). Both during clinical tests of joint hyper-resistance and when standing balance is perturbed, muscles are stretched. In children with CP, the stretch reflex in response to passive joint rotations is often hyper-excitable and reduced reciprocal inhibition has been observed in the antagonistic muscle (2). Furthermore, children with CP often have increased muscle co-activation during standing balance perturbations (3). Recently, we demonstrated that this increased muscle co-activation is not a useful compensation strategy and might therefore be a consequence of reduced reciprocal inhibition (4). Here, we investigated whether a reduction in reciprocal inhibition between plantarflexors and dorsiflexors in response to a passive stretching of the plantarflexors was related to higher levels of co-activation in response to toe-up rotational perturbations of standing balance. Twenty children with spastic CP participated in the study. We performed an instrumented spasticity assessment of the plantarflexors (5) followed by a standing balance assessment (Fig. 1, row1-2). During the instrumented spasticity assessment, the ankle was rotated as fast as possible from a plantar flexed position until the end of range of motion towards dorsiflexion. At least 7 seconds of rest were provided between different trials, five in total. Reactive standing balance was tested on a moving platform. Participants were instructed to maintain balance without stepping and the platform was rotated such that ankle dorsiflexion was elicited. Perturbations were repeated 8 times. Electromyography (EMG) from gastrocnemius lateralis (LG) and medialis (MG), soleus (SOL) and tibialis anterior (TA) was collected during both assessments. EMG was filtered and normalized to the maximal value across assessments (Fig. 1, row 3). We calculated the co-contraction index (CCI) as the overlap between TA and respectively LG, MG, and SOL EMG (6). We tested the relation between the CCI during passive joint rotations and reactive standing balance. The CCI between the plantarflexors and tibialis anterior during spasticity assessment was moderately correlated with the CCI during reactive balance responses (LG-TA: r=0.55; p= 0.02; MG-TA: r= 0.57, p=0.01; SOL-TA: r=0.54, p=0.02; Fig. 1, row 4). Fig. 1: Correlation between co-contraction index during instrumented spasticity assessment and perturbations of standing balance.Download : Download high-res image (242KB)Download : Download full-size image Our results suggest that deficits in spinal pathways governing the stretch reflex, and more specifically reduced reciprocal inhibition, might hinder reactive balance control. Successful postural control might therefore rely on compensations in supraspinal pathways to generate net balance correcting ankle momen","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135299044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}