Narges Jahantigh Akbari, Mohammad Yousefi, Nahid Tahan
{"title":"多期小脑与前额叶经颅直流电刺激对多发性硬化症患者体位平衡的影响","authors":"Narges Jahantigh Akbari, Mohammad Yousefi, Nahid Tahan","doi":"10.1016/j.gaitpost.2023.07.111","DOIUrl":null,"url":null,"abstract":"Multiple sclerosis (MS) is a progressive autoimmune disease, characterized by a destructive inflammatory process in the myelin sheaths (1). Multiple disorders are associated with MS, which typically include muscle weakness, spasticity, cognitive disorder, sensory symptoms, movement disorders, fatigue, and gait disorders (2). Generally, gait and balance disorders are common in patients with MS (3). Approximately 80% of these patients, even in the early stages of disease, show deficits in postural control, which in turn affect their quality of life (3). Therefore, the aim this study was to comparing the effects of multi-session anodal trans-cranial direct current stimulation of cerebellar and dorsolateral prefrontal cortices on postural balance in patients with multiple sclerosis Which area of cerebellum tDCS or prefrontal tDCS will have a greater effect on postural balance in MS patients? In this double-blind randomized controlled trial, 20 patients with multiple sclerosis were randomly divided into two groups: dorsolateral prefrontal cortex (DLPFC) tDCS (n=11) and cerebellum tDCS (n=9). Treatment in both groups consisted of 20 minutes tDCS with 2 mA intensity and 10 minutes’ balance training, for 10 sessions, over four weeks. Dynamic balance was assessed with Berg Balance Scale (BBS), Timed Up and Go test (TUG) and static balance using force plate before and after treatment. In both groups, a significant increase in BBS and a significant decrease in TUG was observed (P <0.05). A significant decrease found in sways path in the anterior-posterior direction and total sway path in the cerebellum group (P <0.05). A significant improvement was found in BBS, sway speed in the anterior-posterior direction, and total sway speed in the cerebellum group compared to the DLPFC group (P <0.05). Findings suggest that tDCS can use in combination with physical therapy to treat balance disorders in MS patients.","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparing the effects of multi-session cerebellar and prefrontal trans-cranial direct current stimulation on postural balance in patients with multiple sclerosis\",\"authors\":\"Narges Jahantigh Akbari, Mohammad Yousefi, Nahid Tahan\",\"doi\":\"10.1016/j.gaitpost.2023.07.111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple sclerosis (MS) is a progressive autoimmune disease, characterized by a destructive inflammatory process in the myelin sheaths (1). Multiple disorders are associated with MS, which typically include muscle weakness, spasticity, cognitive disorder, sensory symptoms, movement disorders, fatigue, and gait disorders (2). Generally, gait and balance disorders are common in patients with MS (3). Approximately 80% of these patients, even in the early stages of disease, show deficits in postural control, which in turn affect their quality of life (3). Therefore, the aim this study was to comparing the effects of multi-session anodal trans-cranial direct current stimulation of cerebellar and dorsolateral prefrontal cortices on postural balance in patients with multiple sclerosis Which area of cerebellum tDCS or prefrontal tDCS will have a greater effect on postural balance in MS patients? In this double-blind randomized controlled trial, 20 patients with multiple sclerosis were randomly divided into two groups: dorsolateral prefrontal cortex (DLPFC) tDCS (n=11) and cerebellum tDCS (n=9). Treatment in both groups consisted of 20 minutes tDCS with 2 mA intensity and 10 minutes’ balance training, for 10 sessions, over four weeks. Dynamic balance was assessed with Berg Balance Scale (BBS), Timed Up and Go test (TUG) and static balance using force plate before and after treatment. In both groups, a significant increase in BBS and a significant decrease in TUG was observed (P <0.05). A significant decrease found in sways path in the anterior-posterior direction and total sway path in the cerebellum group (P <0.05). A significant improvement was found in BBS, sway speed in the anterior-posterior direction, and total sway speed in the cerebellum group compared to the DLPFC group (P <0.05). Findings suggest that tDCS can use in combination with physical therapy to treat balance disorders in MS patients.\",\"PeriodicalId\":94018,\"journal\":{\"name\":\"Gait & posture\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gait & posture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.gaitpost.2023.07.111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gait & posture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.gaitpost.2023.07.111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
多发性硬化症(MS)是一种进行性自身免疫性疾病,以髓鞘的破坏性炎症过程为特征(1)。多发性硬化症与多种疾病相关,通常包括肌肉无力、痉挛、认知障碍、感觉症状、运动障碍、疲劳和步态障碍(2)。通常,步态和平衡障碍在多发性硬化症患者中很常见(3)。大约80%的患者,即使在疾病的早期阶段,因此,本研究的目的是比较多节经颅直流电刺激小脑和前额叶背外侧皮质对多发性硬化症患者姿势平衡的影响,小脑tDCS或前额叶tDCS哪个区域对MS患者姿势平衡的影响更大?在本双盲随机对照试验中,20例多发性硬化症患者随机分为背外侧前额叶皮层(DLPFC) tDCS组(n=11)和小脑tDCS组(n=9)。两组的治疗包括20分钟2 mA强度的tDCS和10分钟的平衡训练,共10次,为期四周。治疗前后分别采用Berg平衡量表(BBS)、Timed Up and Go测试(TUG)和静力板评估动平衡。两组患者BBS均显著升高,TUG均显著降低(P <0.05)。小脑组前后侧偏斜径和总偏斜径明显减少(P <0.05)。与DLPFC组相比,小脑组的BBS、前后方向摇摆速度和总摇摆速度均有显著改善(P <0.05)。研究结果表明,tDCS可与物理治疗联合用于治疗多发性硬化症患者的平衡障碍。
Comparing the effects of multi-session cerebellar and prefrontal trans-cranial direct current stimulation on postural balance in patients with multiple sclerosis
Multiple sclerosis (MS) is a progressive autoimmune disease, characterized by a destructive inflammatory process in the myelin sheaths (1). Multiple disorders are associated with MS, which typically include muscle weakness, spasticity, cognitive disorder, sensory symptoms, movement disorders, fatigue, and gait disorders (2). Generally, gait and balance disorders are common in patients with MS (3). Approximately 80% of these patients, even in the early stages of disease, show deficits in postural control, which in turn affect their quality of life (3). Therefore, the aim this study was to comparing the effects of multi-session anodal trans-cranial direct current stimulation of cerebellar and dorsolateral prefrontal cortices on postural balance in patients with multiple sclerosis Which area of cerebellum tDCS or prefrontal tDCS will have a greater effect on postural balance in MS patients? In this double-blind randomized controlled trial, 20 patients with multiple sclerosis were randomly divided into two groups: dorsolateral prefrontal cortex (DLPFC) tDCS (n=11) and cerebellum tDCS (n=9). Treatment in both groups consisted of 20 minutes tDCS with 2 mA intensity and 10 minutes’ balance training, for 10 sessions, over four weeks. Dynamic balance was assessed with Berg Balance Scale (BBS), Timed Up and Go test (TUG) and static balance using force plate before and after treatment. In both groups, a significant increase in BBS and a significant decrease in TUG was observed (P <0.05). A significant decrease found in sways path in the anterior-posterior direction and total sway path in the cerebellum group (P <0.05). A significant improvement was found in BBS, sway speed in the anterior-posterior direction, and total sway speed in the cerebellum group compared to the DLPFC group (P <0.05). Findings suggest that tDCS can use in combination with physical therapy to treat balance disorders in MS patients.