Gait & posture最新文献

筛选
英文 中文
Influence of medial longitudinal arch flexibility on lower limb joint coupling coordination and gait impulse. 内侧纵弓灵活性对下肢关节耦合协调和步态冲力的影响。
Gait & posture Pub Date : 2024-10-03 DOI: 10.1016/j.gaitpost.2024.10.002
Xuanzhen Cen, Peimin Yu, Yang Song, Dong Sun, Minjun Liang, István Bíró, Yaodong Gu
{"title":"Influence of medial longitudinal arch flexibility on lower limb joint coupling coordination and gait impulse.","authors":"Xuanzhen Cen, Peimin Yu, Yang Song, Dong Sun, Minjun Liang, István Bíró, Yaodong Gu","doi":"10.1016/j.gaitpost.2024.10.002","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2024.10.002","url":null,"abstract":"<p><strong>Background: </strong>A causal link exists between structural differences in the foot and alterations in the lower limb biomechanics, which might predispose an individual to develop characteristic musculoskeletal disorders.</p><p><strong>Research question: </strong>This study aimed to determine how the foot structural characteristics, as represented by the medial longitudinal arch flexibility, affect lower limb joint coupling coordination and anterior-posterior ground reaction impulses (GRIs) during walking and running.</p><p><strong>Methods: </strong>Following the calculation of arch height flexibility, a total of fifty-four physically active males were grouped and completed gait experiments to collect kinematic and kinetic data synchronously. Inter-joint coordination and variability were calculated from the angle-angle plots of knee-hip, ankle-knee, and metatarsophalangeal (MTP)-ankle couplings based on an optimized vector coding technique.</p><p><strong>Results: </strong>Our results indicate that coupling coordination of interest and its variability, as well as anterior-posterior GRIs, could potentially be influenced due to differences in arch height flexibility. Notably, the individuals with stiff arches exhibited significantly greater coordination variabilities during the early stance for both ankle-knee and MTP-ankle coordination yet significantly smaller for MTP-ankle coordination variabilities during the mid-stance phase. Furthermore, combining the statistical parametric mapping analysis results, the flexible arches experienced a greater proportion of GRIs in the anterior-posterior direction.</p><p><strong>Significance: </strong>In conclusion, these observations demonstrated that variations in arch flexibility led to differences in lower limb joint coordination variabilities and GRIs during gait. This fresh insight into inter-joint coordinative function may be useful for enhancing foot motion strategies based on arch structural characteristics.</p>","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142383060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanisms of gait speed changes in middle-aged adults: Simultaneous analysis of magnitude and temporal effects. 中年人步速变化的机制:同时分析幅度和时间效应。
Gait & posture Pub Date : 2024-09-26 DOI: 10.1016/j.gaitpost.2024.09.017
Vinayak Vijayan, Shanpu Fang, Timothy Reissman, Allison L Kinney, Megan E Reissman
{"title":"Mechanisms of gait speed changes in middle-aged adults: Simultaneous analysis of magnitude and temporal effects.","authors":"Vinayak Vijayan, Shanpu Fang, Timothy Reissman, Allison L Kinney, Megan E Reissman","doi":"10.1016/j.gaitpost.2024.09.017","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2024.09.017","url":null,"abstract":"<p><strong>Background: </strong>Middle-aged adults represent the transition between younger and older adults, where some of the characteristic gait differences due to aging begins to surface. However, the gait characteristics of middle-aged adults across the whole gait cycle remains an understudied topic. As speed is a sensitive indicator of health, characterizing the effects of speed on the gait of middle-aged adults and differentiating it from the response of young adults will provide insights into the effects of aging on gait speed modulation mechanisms.</p><p><strong>Research question: </strong>What are the mechanisms of gait speed changes that are employed by middle-aged adults, and how are they different from younger adults?</p><p><strong>Methods: </strong>A cohort of healthy young and middle-aged adults completed 60 second trials at three different speeds. Joint kinematics, kinetics, and surface electromyography data were analyzed and compared between the speed levels and age groups. Statistical Parametric Mapping along with a nonlinear curve registration algorithm was used to simultaneously assess the changes in both magnitude and timing of different metrics.</p><p><strong>Results: </strong>When compared to the younger cohort, the middle-aged cohort had significantly lower ankle range of motion, dorsiflexion moment during loading response and plantarflexion moment during push-off. At the knee joint, the middle-aged adults had significantly lower knee flexion moment during stance. At the hip joint, the middle-aged adults had lower extension moment during terminal stance.</p><p><strong>Significance: </strong>Time-continuous analysis showed that primary differences due to age were related to decreased joint range of motion and joint moment production capability in the middle-aged adults. Faster walking appears a safe method for middle-aged adults to increase joint range of motion and joint moment expression. However, targeted interventions that focus on improving capability are likely also needed. Suggested targets being improving ankle and knee joint moment capability, and increased range of motion at all joints.</p>","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142368021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effects of cognitive-motor interference on walking performance in adolescents with low balance. 认知运动干扰对平衡能力差的青少年行走能力的影响。
Gait & posture Pub Date : 2024-09-23 DOI: 10.1016/j.gaitpost.2024.09.016
Benjamin David Weedon, Patrick Esser, Johnny Collett, Hooshang Izadi, Mario Inacio, Shawn Joshi, Andy Meaney, Anne Delextrat, Steve Kemp, Helen Dawes
{"title":"The effects of cognitive-motor interference on walking performance in adolescents with low balance.","authors":"Benjamin David Weedon, Patrick Esser, Johnny Collett, Hooshang Izadi, Mario Inacio, Shawn Joshi, Andy Meaney, Anne Delextrat, Steve Kemp, Helen Dawes","doi":"10.1016/j.gaitpost.2024.09.016","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2024.09.016","url":null,"abstract":"<p><strong>Background: </strong>Children with reduced motor competence (MC) have reported differences in their walking performance when compared to their typically developed peers, albeit, with inconsistent results.</p><p><strong>Research questions: </strong>What is the effect of reduced balance on walking performance in adolescent boys and girls under cognitive-motor interference conditions?</p><p><strong>Methods: </strong>This cross-sectional study assessed motor competence, in adolescents aged 13-14 years, using the Movement Assessment Battery for Children 2nd edition and walking performance from gait parameters derived from an inertial measurement unit placed over the estimated centre of mass. Each participant performed two 10 m straight-line walks at their self-selected speed. These consisted of a walk with no distractions and a cognitive-motor interference walk (reciting the alternate letters of the alphabet out loud). A two-way mixed ANOVA was used to assess for significant interactions.</p><p><strong>Results: </strong>365 adolescents, (low balance = 58, typical balance = 307) participated in this study (boys = 204, girls = 161). Significant interactions were reported between MC groups and walking condition for walking speed in boys (F<sub>(1,195)</sub> = 5.23, p= 0.02, η<sub>p</sub><sup>2</sup> = 0.03) and girls (F<sub>(1,154)</sub> = 4.05, p= 0.046, η<sub>p</sub><sup>2</sup> = 0.03). Both sexes with low balance reduced their walking speed to a greater extent than their typically developed peers under cognitive-motor interference conditions compared to the single-task walk. In addition, boys with low balance reported increased stride length variability (F<sub>(1,198)</sub>= 4.40, p= 0.037, η<sub>p</sub><sup>2</sup>= 0.02) compared to typically developed peers.</p><p><strong>Significance: </strong>Adolescents with low balance report altered walking. Our data could support a better understanding of the relationship between balance and gait and may help the development of interventions to support those with difficulties.</p>","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142368022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How reliable are femoropelvic kinematics during deep squats? The influence of subject-specific skeletal modelling on measurement variability. 深蹲时的股骨盆运动学有多可靠?受试者特定骨骼模型对测量变异性的影响。
Gait & posture Pub Date : 2024-07-01 Epub Date: 2024-05-08 DOI: 10.1016/j.gaitpost.2024.05.006
Dalia Al Otti, Stijn Ghijselings, Filip Staes, Lennart Scheys
{"title":"How reliable are femoropelvic kinematics during deep squats? The influence of subject-specific skeletal modelling on measurement variability.","authors":"Dalia Al Otti, Stijn Ghijselings, Filip Staes, Lennart Scheys","doi":"10.1016/j.gaitpost.2024.05.006","DOIUrl":"10.1016/j.gaitpost.2024.05.006","url":null,"abstract":"<p><strong>Background: </strong>Biplanar radiography displays promising results in the production of subject-specific (S.specific) biomechanical models. However, the focus has predominantly centred on methodological investigations in gait analysis. Exploring the influence of such models on the analysis of high range of motion tasks linked to hip pathologies is warranted. The aim of this study is to investigate the effect of S.Specific modelling techniques on the reliability of deep squats kinematics in comparison to generic modelling.</p><p><strong>Methods: </strong>8 able-bodied male participants attended 5 motion capture sessions conducted by 3 observers and performed 5 deep squats in each. Prior to each session a biplanar scan was acquired with the reflective-markers attached. Inverse kinematics of pelvis and thigh segments were calculated based on S.specific and Generic model definition. Agreement between the two models femoropelvic orientation in standing was assessed with Bland-Altman plots and paired t- tests. Inter-trial, inter-session, inter-observer variability and observer/trial difference and ratio were calculated for squat kinematic data derived from the two modelling approaches.</p><p><strong>Results: </strong>Compared to the Generic model, the S.Specific model produced a calibration trial that is significantly offset into more posterior pelvis tilt (-2.8±2.7), hip extension (-2.2±3.8), hip abduction (-1.2±3.6) and external rotation (-13.8±11.4). The S.specific model produced significantly different squat kinematics in the sagittal plane of the pelvis (entire squat cycle) and hip (between 40 % and 60 % of the squat cycle). Variability analysis indicated that the error magnitude between the two models was comparable (difference<2°). The S.specific model exhibited a lower variability in the observer/trial ratio in the sagittal pelvis and hip, the frontal hip, but showed a higher variability in the transverse hip.</p><p><strong>Significance: </strong>S.specific modelling appears to introduce a calibration offset that primarily translates into an effect in the sagittal plane kinematics. However, the clinical added value of S.specific modelling in terms of reducing experimental sources of kinematic variability was limited.</p>","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140961272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sleep analysis via wearable sensors in people with Parkinson’s disease 通过穿戴式传感器对帕金森病患者进行睡眠分析
Gait & posture Pub Date : 2023-09-01 DOI: 10.1016/j.gaitpost.2023.07.244
Salvatore Tedesco, Colum Crowe, Marco Sica, Lorna Kenny, Brendan O'Flynn, David Scott Mueller, Suzanne Timmons, John Barton
{"title":"Sleep analysis via wearable sensors in people with Parkinson’s disease","authors":"Salvatore Tedesco, Colum Crowe, Marco Sica, Lorna Kenny, Brendan O'Flynn, David Scott Mueller, Suzanne Timmons, John Barton","doi":"10.1016/j.gaitpost.2023.07.244","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.07.244","url":null,"abstract":"Parkinson disease (PD), a well-known illness of motor dysfunction, is characterized by a high prevalence of sleep problems due to degenerative brain changes or comorbid conditions [1]. Wearable devices, in the form of actigraphy, have been shown to also be appropriate for monitoring sleep variables in PD patients [2,3] despite reports that current actigraphy algorithms may misinterpret dysfunctional motor activity, such as tremors, bradykinesia, dyskinesia, and limited arm movement while walking, as well as drug-induced hypermotility, thus making their use problematic in people with PD (PwPD) [4]. The ActiGraph GT3X (Pensacola, FL, USA) accelerometer is capable of recording accelerometry measurements for multiple days at 100 Hz, and has been adopted for massive population-level data collections [5]. In the last few years, Van Hees et al. have developed and made freely available open-source software to estimate sleep variables using data collected from similar off-the-shelf wearable inertial sensors [6]. The goal of this study is to investigate if the ActiGraph data, in combination with Van Hees et al.’s heuristic algorithm Distribution of Change in Z-Angle (HDCZA), can correctly estimate sleep variables in PD patients. To the best of the authors’ knowledge, it is the first study that adopts ActiGraph sensors and this methodology for sleep analysis in PwPD. For further comparison, a custom hardware prototype device named WESAA (Wearable Enabled Symptom Assessment Algorithms) developed at the Tyndall National Institute [8] and with the same capabilities as an ActiGraph device was adopted for additional analysis. Nineteen PD subjects took part in a data collection where participants wore the ActiGraph on their most affected wrist for a minimum of 24 hours and simultaneously filled out a sleep diary. Accelerometer data was collected at 100 Hz. Additionally, six subjects repeated the same data collection protocol while wearing the WESAA system. The heuristic algorithm described in [7] was implemented to detect periods of sleep and compared against the participant diaries. Results are shown in Table I and Figure I in the picture below. Accuracy reported on the subjects using the Actigraph was appropriate with an average 77.8±13.6%, even though results were quite variable across patients (between 31.6% and 91.2%). Less variability is shown with the WESAA device, even though only 6 subjects have carried out this data collection, with an average accuracy of 81.9±6.2% (71.8%-90.2%).Download : Download high-res image (157KB)Download : Download full-size image The present investigation shows that ActiGraph accelerometry data collected over 24 hours, in conjunction with the heuristic algorithm HDCZA for the detection of sleep periods, is an appropriate approach to estimate sleep duration even in PwPD. The same algorithm adopted on the WESAA hardware device shows even more promising results but further investigations with a larger sample size are required to c","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135297884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The importance of the functional base-of-support for clinical biomechanical balance analysis 功能支撑基础对临床生物力学平衡分析的重要性
Gait & posture Pub Date : 2023-09-01 DOI: 10.1016/j.gaitpost.2023.07.233
Lizeth Sloot, Elza van Duijnhoven, Merel A. Brehm, Tamaya Van Criekinge, Matthew Millard
{"title":"The importance of the functional base-of-support for clinical biomechanical balance analysis","authors":"Lizeth Sloot, Elza van Duijnhoven, Merel A. Brehm, Tamaya Van Criekinge, Matthew Millard","doi":"10.1016/j.gaitpost.2023.07.233","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.07.233","url":null,"abstract":"The occurrence of falls and balance problems are common in persons of higher age or with neuromuscular disorders. While clinical balance scales are unable to accurately identify balance, biomechanical balance models (such as the extrapolated center-of-mass) need missing information on the base-of-support formed by the feet [1]. People can balance their body mass above this area formed by the feet without taking a compensatory step. Common impairments such as muscle degeneration likely decrease this support area. Therefore, we evaluated changes in the functional base-of-support (fBOS) resulting from ageing and neuromuscular disorders and the impact on gait balance analysis. We assessed the fBOS in 20 young persons (28±7 yrs), 7 with lower leg muscle weakness due to slowly progressive neuromuscular disorders (63±5 yrs; caption Fig. 1), 7 age-matched middle-aged (62±8 yrs) and 7 old persons (80±3 yrs). Ground forces and foot markers were recorded while participants slowly moved their center-of-pressure in as large circles as possible without moving their feet. The fBOS is modeled was the convex hull enclosing this circled area normalized to marker-based foot dimensions [2]. The effect of ageing of the fBOS on dynamic balance outcomes during walking at heel strike (anterior-posterior direction) was assessed in a dataset of 138 persons across the lifespan [3,4]. The fBOS was only 24% of the foot outline formed by markers for young persons (Fig. 1A) and is 84% smaller in patients with neuromuscular disorders (pttest<0.001). The fBOS decreased with age (pANOVA=0.003), with similar values in mid-age (-24%, pttest=0.11) and a 52% decrease in old age (pttest=0.002) compared to young (Fig. 1A). When taken the fBOS into account, dynamic balance shifts from inside to outside the support area. Extrapolating the age-reduction in fBOS, balance changes from increasing to decreasing with age. Fig. 1: Functional Base of Support (fBOS) for the different participant groups.Download : Download high-res image (333KB)Download : Download full-size image Studies overlook the base-of-support as part of dynamic balance analysis [1]. This study shows the importance of using an accurate model of the fBOS, as a single reference marker does not capture 1) the shape of the effective fBOS; 2) the effects of age and disorder; and 3) changes over the gait cycle. Use of the fBOS revealed reductions in balance in older persons, compared to safer margins without the fBOS. The large group variances indicate that individual fBOS measurements are needed for precise balance assessment. We provide the fBOS model per group and code to apply this to measured markers, so researchers can establish clinical meaningful differences in dynamic balance outcomes. As such, this study strives towards the integration of accurate biomechanical balance analysis in clinical gait analysis.","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135298053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing single camera markerless motion capture during upper limb activities of daily living 评估上肢日常生活活动中单摄像头无标记动作捕捉
Gait & posture Pub Date : 2023-09-01 DOI: 10.1016/j.gaitpost.2023.07.222
Bradley Scott, Edward Chadwick, Mhairi McInnes, Dimitra Blana
{"title":"Assessing single camera markerless motion capture during upper limb activities of daily living","authors":"Bradley Scott, Edward Chadwick, Mhairi McInnes, Dimitra Blana","doi":"10.1016/j.gaitpost.2023.07.222","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.07.222","url":null,"abstract":"In a recent scoping review (Scott et al., 2022) we discussed how single camera markerless motion capture (SCMoCap) may help to facilitate motion analysis in situations where it would otherwise not be possible, such as at-home rehabilitation for children with cerebral palsy (Kidziński et al., 2020), and more frequent data collection. However, few studies reported error of measurement in a clinically interpretable manner and there is little evidence assessing SCMoCap during upper limb activities of daily living. Presenting a comprehensive validation of SCMoCap, alongside clinically meaningful evaluation of results would be invaluable for clinicians and future researchers who are interested in implementing upper limb movement analysis into clinical practice (Philp et al., 2021). Are state-of-the-art single camera markerless motion capture methods suitable for measuring joint angles during a typical upper-limb functional assessment? Study participants were instructed to perform a compressive collection of physiological and functional movements that are typically part of an upper limb functional assessment. Movements were repeated 3 times for both the frontal and sagittal planes. Movements were recorded simultaneously with a 10-camera OptiTrack Prime 13 W marker-based motion capture setup (NaturalPoint, USA) and Azure Kinect camera (Microsoft, USA). An eSync2 synchronization device (NaturalPoint, USA) was used to avoid exposure interference between systems. Marker-based bony landmarks and joint centers were collected as recommended by the International Society of Biomechanics (Wu et al., 2005). Marker-based trajectories were processed using MotionMonitor xGen (Innovative Sports Training, USA), where a 20 Hz lowpass Butterworth filter was applied to marker positions. Markerless joint center positions were calculated using Azure Kinect body tracking. Markerless positions were filtered using a 10 Hz lowpass Butterworth filter, then upsampled to 120 Hz matching the OptiTrack recording frequency. Signals were time synchronized using cross correlation. Joint angles were calculated by solving inverse kinematics in OpenSim using Hamner’s model (Hamner, Seth & Delp, 2010). Here we present preliminary results of elbow flexion agreement from one participant during a cup drinking task (see figure1). The agreement between markerless and marker-based methods was evaluated in RStudio using, Bland-Altman analysis (mean difference = -7.49 °, upper limits of agreement 20.87 °, lower limits of agreement -35.85 °); intra-class correlation coefficient (ICC = 0.91 °); and root mean squared error (RMSE = 16.30 °). Fig. 1: Elbow flexion angle during a cup drinking taskDownload : Download high-res image (95KB)Download : Download full-size image Our preliminary results suggest good agreement between markerless and marker-based motion capture for elbow flexion while performing a cup drinking task. The Kinect underestimates joint angles at local maxima and minima (see Fig. 1), a","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135298197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analyzing the Impacts of Rectus Femoris Transferring and Botulinum Toxin on Cerebral Palsy: a Case study 股直肌转移及肉毒杆菌毒素对脑瘫的影响分析
Gait & posture Pub Date : 2023-09-01 DOI: 10.1016/j.gaitpost.2023.07.143
Sadegh Madadi, Mostafa Rostami, Afshin Taheri Azam
{"title":"Analyzing the Impacts of Rectus Femoris Transferring and Botulinum Toxin on Cerebral Palsy: a Case study","authors":"Sadegh Madadi, Mostafa Rostami, Afshin Taheri Azam","doi":"10.1016/j.gaitpost.2023.07.143","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.07.143","url":null,"abstract":"Cerebral palsy is a group of different disorders that affect mobility, muscle tone and erectile structure. This condition is usually caused by damage to the brain during growth and development, usually before birth [1]. Houwen et al. [2] evaluated the effect of Botolinum Toxin treatment on the patterns of muscle activation of the rectus femoris and this study showed that BTX-A injection did not improve lower limb muscle activation patterns during walking. Muthusamy et al. [3] examined the effect of rectus femoris surgery on thirty-eight patients with CP and Patients had a significant improvement in postoperative KROM when preoperative KROM was less than 80% normal.Tedroff et al. [4] was studied in 94 children with cerebral palsy who received BoNT-A injection and results showed that BoNT-A could be effective in reducing muscle tone over a longer period of time. \"How does the combination of rectus femoris transfer and botulinum toxin affect gait kinematics, range of motion, and muscle activation patterns in patients with cerebral palsy, and how do the effects compare to each treatment alone?\" The study involved a motion data of patient with cerebral palsy and a normal child.a simulation model was created using the inverse dynamics method to analyze the joint angles and muscle forces during walking in opensim. The forward dynamic method was then used to simulate the effects of rectus femoris transfer and Botulinum Toxin injection on muscle weakness and surgery.Download : Download high-res image (149KB)Download : Download full-size image using SPSS V.19 software (ANOVA) and output data obtained from modeling. For right hip flexion, the Transferring group is significantly different from the Botolinum toxin group (P<0.001) and can be due to the weakness of the thigh extensor muscles in the Botulinum Toxin group. For right knee flexion, the surgical group is significantly different from the Botolinum Toxin group (P<0.001) and the patient's initial model and it can be concluded that rectus femoris surgery can cause initial relative improvement in the patient and strengthening the extensor knee muscles can help improve the patient's movement. For left hip flexion, the surgical group is significantly different from the Botolinum Toxin group (P<0.001) and can be due to the weakness of the extensor thigh muscles in the Botolinum Toxin group. For left knee flexion,the surgical group is significantly different from Botolinum Toxin group (P<0.001) and the patient's initial model and it can be concluded that rectus femoris Transferring surgery can cause initial relative improvement in the patient The results show that therapeutic interventions including surgery in the first stage are more effective than botulinum toxin and muscle weakness by botulinum toxin injection in the short term may not be effective and require scheduled studies over long periods of time.","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135298205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gastrocnemius medialis Muscle-tendon unit Properties do not differ between Children with unilateral and bilateral spastic Cerebral Palsy 小儿单侧和双侧痉挛性脑瘫的腓肠肌内侧肌肌腱单位特性无差异
Gait & posture Pub Date : 2023-09-01 DOI: 10.1016/j.gaitpost.2023.07.133
Annika Kruse, Andreas Habersack, Bernhard Guggenberger, Markus Tilp, Martin Svehlik
{"title":"Gastrocnemius medialis Muscle-tendon unit Properties do not differ between Children with unilateral and bilateral spastic Cerebral Palsy","authors":"Annika Kruse, Andreas Habersack, Bernhard Guggenberger, Markus Tilp, Martin Svehlik","doi":"10.1016/j.gaitpost.2023.07.133","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.07.133","url":null,"abstract":"","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135298365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comparison of 2 models: Plug in Gait and pyCGM2 1.0 Plug - in步态和pyCGM2 1.0两种模型的比较
Gait & posture Pub Date : 2023-09-01 DOI: 10.1016/j.gaitpost.2023.08.021
Corey Josep, Nicolaos Darras
{"title":"A comparison of 2 models: Plug in Gait and pyCGM2 1.0","authors":"Corey Josep, Nicolaos Darras","doi":"10.1016/j.gaitpost.2023.08.021","DOIUrl":"https://doi.org/10.1016/j.gaitpost.2023.08.021","url":null,"abstract":"","PeriodicalId":94018,"journal":{"name":"Gait & posture","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135298370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信