Current stem cell research & therapy最新文献

筛选
英文 中文
Identifying Dental Pulp Stem Cell as a Novel Therapeutic trategy for Digestive Diseases. 鉴定牙髓干细胞作为一种新的消化系统疾病治疗策略。
Current stem cell research & therapy Pub Date : 2024-01-01 DOI: 10.2174/011574888X275737231120045815
Xieyin Sun, Zhaoyi Lin, Nuo Xu, Yinqi Chen, Saiyan Bian, Wenjie Zheng
{"title":"Identifying Dental Pulp Stem Cell as a Novel Therapeutic trategy for Digestive Diseases.","authors":"Xieyin Sun, Zhaoyi Lin, Nuo Xu, Yinqi Chen, Saiyan Bian, Wenjie Zheng","doi":"10.2174/011574888X275737231120045815","DOIUrl":"10.2174/011574888X275737231120045815","url":null,"abstract":"<p><p>Mesenchymal stem cells (MSCs) have been identified as potential therapeutics for various diseases. In contrast to other sources of MSCs, dental stem cells (DSCs) have received increased attention due to their high activity and easy accessibility. Among them, dental pulp stem cells (DPSCs) exhibit superior self-renewal, multipotency, immunomodulatory, and regenerative capacities. Following their inspiring performance in animal models and clinical trials, DPSCs show pharmacological potential in regenerative medicine. In this review, we have generalized the sources, heterogeneity, and biological characteristics of DPSCs, as well as compared them with other types of dental stem cells. In addition, we summarized the application of DPSCs in digestive diseases (such as liver, esophageal, and intestinal diseases), highlighting their regenerative and pharmacological potential based on the existing preclinical and clinical evidence. Specifically, DPSCs can be home to injured or inflamed tissues and exert repair and regeneration functions by facilitating immune regulation, anti-inflammation, and directional differentiation. Although DPSCs have a rosy prospect, future studies should handle the underlying drawbacks and pave the way for the identification of DPSCs as novel regenerative medicine.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138453342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differentiation of Human Adipose-derived Stem Cells to Exosome-affected Neural-like Cells Extracted from Human Cerebrospinal Fluid Using Bioprinting Process. 生物打印技术从人脑脊液中提取的脂肪干细胞分化为受外泌体影响的神经样细胞。
Current stem cell research & therapy Pub Date : 2024-01-01 DOI: 10.2174/011574888X270145231102062259
Mojtaba Cheravi, Javad Baharara, Parichehreh Yaghmaei, Nasim Hayati Roudbari
{"title":"Differentiation of Human Adipose-derived Stem Cells to Exosome-affected Neural-like Cells Extracted from Human Cerebrospinal Fluid Using Bioprinting Process.","authors":"Mojtaba Cheravi, Javad Baharara, Parichehreh Yaghmaei, Nasim Hayati Roudbari","doi":"10.2174/011574888X270145231102062259","DOIUrl":"10.2174/011574888X270145231102062259","url":null,"abstract":"<p><strong>Background: </strong>Advancement in tissue engineering has provided novel solutions for creating scaffolds as well as applying induction factors in the differentiation of stem cells. The present research aimed to investigate the differentiation of human adipose-derived mesenchymal stem cells to neural-like cells using the novel bioprinting method, as well as the effect of cerebrospinal fluid exosomes.</p><p><strong>Methods: </strong>In the present study, the extent of neuronal proliferation and differentiation of adipose- derived stem cells were explored using the MTT method, immunocytochemistry, and real-- time PCR in the scaffolds created by the bioprinting process. Furthermore, in order to investigate the veracity of the identity of the CSF (Cerebrospinal fluid) derived exosomes, after the isolation of exosomes, dynamic light scattering (DLS), scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques were used.</p><p><strong>Results: </strong>MTT findings indicated survivability and proliferation of cells in the scaffolds created by the bioprinting process during a 14-day period. The results obtained from real-time PCR showed that the level of MAP2 gene (Microtubule Associated Protein 2) expression increased on days 7 and 14, while the expression of the Nestin gene (intermediate filament protein) significantly decreased compared to the control. The investigation to confirm the identity of exosomes indicated that the CSF-derived exosomes had a spherical shape with a 40-100 nm size.</p><p><strong>Conclusion: </strong>CSF-derived exosomes can contribute to the neuronal differentiation of adipose- derived stem cells in alginate hydrogel scaffolds created by the bioprinting process.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92158083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adipose Mesenchymal Stem Cell-derived Exosomes Enhanced Glycolysis through the SIX1/HBO1 Pathway against Oxygen and Glucose Deprivation Injury in Human Umbilical Vein Endothelial Cells. 脂肪间充质干细胞衍生的外泌体通过SIX1/HBO1途径增强人脐静脉内皮细胞的糖酵解,对抗氧和葡萄糖剥夺损伤。
Current stem cell research & therapy Pub Date : 2024-01-01 DOI: 10.2174/011574888X265623230921045240
Xiangyu Zhang, Xin Zhang, Lu Chen, Jiaqi Zhao, Ashok Raj, Yanping Wang, Shulin Li, Chi Zhang, Jing Yang, Dong Sun
{"title":"Adipose Mesenchymal Stem Cell-derived Exosomes Enhanced Glycolysis through the SIX1/HBO1 Pathway against Oxygen and Glucose Deprivation Injury in Human Umbilical Vein Endothelial Cells.","authors":"Xiangyu Zhang, Xin Zhang, Lu Chen, Jiaqi Zhao, Ashok Raj, Yanping Wang, Shulin Li, Chi Zhang, Jing Yang, Dong Sun","doi":"10.2174/011574888X265623230921045240","DOIUrl":"10.2174/011574888X265623230921045240","url":null,"abstract":"<p><strong>Background: </strong>Angiogenesis and energy metabolism mediated by adipose mesenchymal stem cell-derived exosomes (AMSC-exos) are promising therapeutics for vascular diseases.</p><p><strong>Objectives: </strong>The current study aimed to explore whether AMSC-exos have therapeutic effects on oxygen and glucose deprivation (OGD) human umbilical vein endothelial cells (HUVECs) injury by modulating the SIX1/HBO1 signaling pathway to upregulate endothelial cells (E.C.s) glycolysis and angiogenesis.</p><p><strong>Methods: </strong>AMSC-exos were isolated and characterized following standard protocols. AMSC-exos cytoprotective effects were evaluated in the HUVECs-OGD model. The proliferation, migration, and tube formation abilities of HUVECs were assessed. The glycolysis level was evaluated by detecting lactate production and ATP synthesis. The expressions of HK2, PKM2, VEGF, HIF-1α, SIX1, and HBO1 were determined by western blotting, and finally, the SIX1 overexpression vector or small interfering RNA (siRNA) was transfected into HUVECs to assess the change in HBO1 expression.</p><p><strong>Results: </strong>Our study revealed that AMSC-exos promotes E.C.s survival after OGD, reducing E.C.s apoptosis while strengthening E.C.'s angiogenic ability. AMSC-exos enhanced glycolysis and reduced OGD-induced ECs injury by modulation of the SIX1/HBO1 signaling pathway, which is a novel anti-endothelial cell injury role of AMSC-exos that regulates glycolysis <i>via</i> activating the SIX1/HBO1 signaling pathway.</p><p><strong>Conclusion: </strong>The current study findings demonstrate a useful angiogenic therapeutic strategy for AMSC-exos treatment in vascular injury, thus providing new therapeutic ideas for treating ischaemic diseases.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41163269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adipose Stem Cells Derived Exosomes Alleviate Bronchopulmonary Dysplasia and Regulate Autophagy in Neonatal Rats. 脂肪干细胞来源的外泌体减轻新生大鼠支气管肺发育不良并调节自噬。
Current stem cell research & therapy Pub Date : 2024-01-01 DOI: 10.2174/011574888X260261230928094309
Yuanyuan Sun, Cuie Chen, Yuanyuan Liu, Anqun Sheng, Shi Wang, Xixi Zhang, Dan Wang, Qiu Wang, Chaosheng Lu, Zhenlang Lin
{"title":"Adipose Stem Cells Derived Exosomes Alleviate Bronchopulmonary Dysplasia and Regulate Autophagy in Neonatal Rats.","authors":"Yuanyuan Sun, Cuie Chen, Yuanyuan Liu, Anqun Sheng, Shi Wang, Xixi Zhang, Dan Wang, Qiu Wang, Chaosheng Lu, Zhenlang Lin","doi":"10.2174/011574888X260261230928094309","DOIUrl":"10.2174/011574888X260261230928094309","url":null,"abstract":"<p><strong>Background: </strong>Mesenchymal stem cell-derived exosomes (MSC-Exos) therapies have shown prospects in preclinical models of pathologies relevant to neonatal medicine, such as bronchopulmonary dysplasia (BPD). Adipose-derived stem cells (ADSCs) have been recognized as one of the most promising stem cell sources. Autophagy plays a key role in regulating intracellular conditions, maintaining cell growth and development, and participating in the pathogenesis of BPD.</p><p><strong>Objectives: </strong>To investigate the potential therapeutic role of ADSC-Exos on BPD and to illustrate the role of autophagy in this process.</p><p><strong>Method: </strong>ADSC-Exos was isolated from media conditioned of ADSCs by ultracentrifugation and characterized by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blotting (WB). Newborn rats were exposed to hyperoxia (90% O2) from postnatal day 0 (P0) to P7, and returned to room air until P14 to mimic BPD. ADSC-Exos was treated by intratracheal or intravenous administration on P4. Treated animals and appropriate controls were harvested on P7 and P14 for assessment of pulmonary parameters.</p><p><strong>Results: </strong>Hyperoxia-exposed rats were presented with pronounced alveolar simplification with decreased radial alveolar count (RAC) and increased mean linear intercept (MLI), impaired vascular development with low vascular endothelial growth factor (VEGF) and CD31 expression, and stimulated inflammation with increased expression of TNF-α, IL-1β, and IL-6, and decreased expression of IL-10. Meanwhile, the rats with hyperoxia exposure blocked autophagic flux with lower levels of Beclin1, LC3B, LC3BII/I ratio and higher levels of p62. ADSC-Exos administration protected the neonatal lung tissues from the hyperoxia-induced arrest of alveolar and vascular development, reduced inflammation, and facilitated autophagy. Intratracheal administration was more efficacious than intravenous administration.</p><p><strong>Conclusion: </strong>The intratracheal administration of ADSC-Exos significantly improved alveolarization and pulmonary vascularization arrest in hyperoxia-induced BPD, which was associated with facilitating autophagy in part.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41223904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clinical Trials of Mesenchymal Stem Cells for the Treatment of COVID 19. 间充质干细胞治疗新冠肺炎的临床试验19。
Current stem cell research & therapy Pub Date : 2024-01-01 DOI: 10.2174/011574888X260032230925052240
Elham Zendedel, Lobat Tayebi, Mohammad Nikbakht, Elham Hasanzadeh, Shiva Asadpour
{"title":"Clinical Trials of Mesenchymal Stem Cells for the Treatment of COVID 19.","authors":"Elham Zendedel, Lobat Tayebi, Mohammad Nikbakht, Elham Hasanzadeh, Shiva Asadpour","doi":"10.2174/011574888X260032230925052240","DOIUrl":"10.2174/011574888X260032230925052240","url":null,"abstract":"<p><p>Mesenchymal Stem Cells (MSCs) are being investigated as a treatment for a novel viral disease owing to their immunomodulatory, anti-inflammatory, tissue repair and regeneration characteristics, however, the exact processes are unknown. MSC therapy was found to be effective in lowering immune system overactivation and increasing endogenous healing after SARS-CoV-2 infection by improving the pulmonary microenvironment. Many studies on mesenchymal stem cells have been undertaken concurrently, and we may help speed up the effectiveness of these studies by collecting and statistically analyzing data from them. Based on clinical trial information found on clinicaltrials. gov and on 16 November 2020, which includes 63 clinical trials in the field of patient treatment with COVID-19 using MSCs, according to the trend of increasing studies in this field, and with the help of meta-analysis studies, it is possible to hope that the promise of MSCs will one day be realized. The potential therapeutic applications of MSCs for COVID-19 are investigated in this study.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41184575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential Druggability of Mesenchymal Stem/Stromal Cell-derived Exosomes. 间充质干细胞/基质细胞衍生外泌体的潜在药用性
Current stem cell research & therapy Pub Date : 2024-01-01 DOI: 10.2174/011574888X311270240319084835
Fan Zhang, Leisheng Zhang, Hao Yu
{"title":"Potential Druggability of Mesenchymal Stem/Stromal Cell-derived Exosomes.","authors":"Fan Zhang, Leisheng Zhang, Hao Yu","doi":"10.2174/011574888X311270240319084835","DOIUrl":"10.2174/011574888X311270240319084835","url":null,"abstract":"<p><p>Exosomes secreted by mesenchymal stem/stromal cells (MSC-Exos) are advantageous candidate sources for novel acellular therapy. Despite the current standards of good manufacturing practice (GMP), the deficiency of suitable quality-control methods and the difficulties in large-scale preparation largely restrict the development of therapeutic products and their clinical applications worldwide. Herein, we mainly focus on three dominating issues commonly encountered in exosomal GMP, including issues upstream of the cell culture process, downstream of the purification process, exosomes quality control, and the drug properties of exosomes and their druggability from a corporate perspective. Collectively, in this review article, we put forward the issues of preparing clinical exosome drugs for the treatment of diverse diseases and provide new references for the clinical application of GMP-grade MSC-Exos.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140208684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mesenchymal Stem Cell-conditioned Medium Protecting Renal Tubular Epithelial Cells by Inhibiting Hypoxia-inducible Factor-1α and Nuclear Receptor Coactivator-1. 间充质干细胞条件培养基通过抑制缺氧诱导因子-1α和核受体辅活化因子-1保护肾小管上皮细胞。
Current stem cell research & therapy Pub Date : 2024-01-01 DOI: 10.2174/011574888X247652230928064627
Chunling Liao, Yiping Liu, Yongda Lin, Jiali Wang, Tianbiao Zhou, Wenjuan Weng
{"title":"Mesenchymal Stem Cell-conditioned Medium Protecting Renal Tubular Epithelial Cells by Inhibiting Hypoxia-inducible Factor-1α and Nuclear Receptor Coactivator-1.","authors":"Chunling Liao, Yiping Liu, Yongda Lin, Jiali Wang, Tianbiao Zhou, Wenjuan Weng","doi":"10.2174/011574888X247652230928064627","DOIUrl":"10.2174/011574888X247652230928064627","url":null,"abstract":"<p><strong>Background: </strong>Acute kidney injury (AKI) is characterized by inflammatory infiltration and damage and death of renal tubular epithelial cells (RTECs), in which hypoxia plays an important role. Deferoxamine (DFO) is a well-accepted chemical hypoxia-mimetic agent. Mesenchymal stem cell-conditioned medium (MSC-CM) can reduce local inflammation and repair tissue. In this study, we explored the effect and molecular mechanism of MSC-CM-mediated protection of RTECs under DFO-induced hypoxia.</p><p><strong>Methods: </strong>Rat renal proximal tubule NRK-52E cells were treated with different concentrations of DFO for 24 hours, followed by evaluation of RTEC injury, using a Cell Counting Kit-8 (CCK-8) to detect cell viability and western blotting to evaluate the expression of transforming growth factor- beta 1 (TGF-β1), α-smooth muscle actin (α-SMA), and hypoxia-inducible factor-1 alpha (HIF-1α) in NRK-52E cells. Then, three groups of NRK-52E cells were used in experiments, including normal control (NC), 25 μM DFO, and 25 μM DFO + MSC-CM. MSC-CM was obtained from the human umbilical cord. MSC-CM was used to culture cells for 12 hours before DFO treatment, then fresh MSC-CM and 25 μM DFO were added, and cells were cultured for another 24 hours before analysis.</p><p><strong>Results: </strong>Western blotting and cellular immunofluorescence staining showed culture of NRK-52E cells in 25 μM DFO for 24 hours induced HIF-1α and nuclear receptor coactivator-1 (NCoA-1), simulating hypoxia. MSC-CM could inhibit the DFO-induced up-regulation of α-SMA, TGF-β1, HIF-1α and NCoA-1.</p><p><strong>Conclusion: </strong>Our results suggest that MSC-CM has a protective effect on RTECs by down-regulating HIF-1α and NCoA-1, which may be the harmful factors in renal injury.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41223822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fucoxanthin Enhances the Antifibrotic Potential of Placenta-derived Mesenchymal Stem Cells in a CCl4-induced Mouse Model of Liver. 在 CCl4 诱导的肝纤维化小鼠模型中,岩藻黄素可增强胎盘间充质干细胞的抗纤维化潜能。
Current stem cell research & therapy Pub Date : 2024-01-01 DOI: 10.2174/011574888X279940231206100902
Vasilii Slautin, Konstantin Konyshev, Ilya Gavrilov, Olga Beresneva, Irina Maklakova, Dmitry Grebnev
{"title":"Fucoxanthin Enhances the Antifibrotic Potential of Placenta-derived Mesenchymal Stem Cells in a CCl4-induced Mouse Model of Liver.","authors":"Vasilii Slautin, Konstantin Konyshev, Ilya Gavrilov, Olga Beresneva, Irina Maklakova, Dmitry Grebnev","doi":"10.2174/011574888X279940231206100902","DOIUrl":"10.2174/011574888X279940231206100902","url":null,"abstract":"<p><strong>Background: </strong>The effectiveness of fucoxanthin (Fx) in liver diseases has been reported due to its anti-inflammatory and antifibrotic effects. Mesenchymal stem cells (MSCs)-based therapy has also been proposed as a promising strategy for liver fibrosis treatment. Recent studies have shown that the co-administration of MSCs and drugs demonstrates a pronounced effect on liver fibrosis.</p><p><strong>Aim: </strong>This study aimed to determine the therapeutic potential of placenta-derived MSCs (PD-MSCs) in combination with Fx to treat liver fibrosis and evaluate their impact on the main links of liver fibrosis pathogenesis.</p><p><strong>Methods: </strong>After PD-MSCs isolation and identification, outbred ICR/CD1 mice were divided into five groups: Control group, CCl<sub>4</sub> group (CCl<sub>4</sub>), Fx group (CCl<sub>4</sub>+Fx), PD-MSCs group (CCl<sub>4</sub>+MSCs) and cotreatment group (CCl<sub>4</sub>+MSCs+Fx). Biochemical histopathological investigations were performed. Semiquantitative analysis of the alpha-smooth muscle actin (α-SMA+), matrix metalloproteinases (MMP-9+, MMP-13+), tissue inhibitor of matrix metalloproteinases-1 (TIMP-1+) areas, and the number of positive cells in them were studied by immunohistochemical staining. Transforming growth factor-beta (TGF-β), hepatic growth factor (HGF), procollagen-1 (COL1α1) in liver homogenate and proinflammatory cytokines in blood serum were determined using an enzyme immunoassay.</p><p><strong>Results: </strong>Compared to the single treatment with PD-MSCs or Fx, their combined administration significantly reduced liver enzyme activity, the severity of liver fibrosis, the proinflammatory cytokine levels, TGF-β level, α-SMA+, TIMP-1+ areas and the number of positive cells in them, and increased HGF level, MMP-13+, and MMP-9+ areas.</p><p><strong>Conclusion: </strong>Fx enhanced the therapeutic potential of PD-MSCs in CCl4-induced liver fibrosis, but more investigations are necessary to understand the mutual impact of PD-MSCs and Fx.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139418835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Therapeutic and Safety Promise of Mesenchymal Stem Cells for Liver Failure: From Preclinical Experiment to Clinical Application. 间充质干细胞治疗肝衰竭的疗效和安全性前景:从临床前实验到临床应用。
Current stem cell research & therapy Pub Date : 2024-01-01 DOI: 10.2174/011574888X260690230921174343
Qiong Xie, Jundong Gu
{"title":"Therapeutic and Safety Promise of Mesenchymal Stem Cells for Liver Failure: From Preclinical Experiment to Clinical Application.","authors":"Qiong Xie, Jundong Gu","doi":"10.2174/011574888X260690230921174343","DOIUrl":"10.2174/011574888X260690230921174343","url":null,"abstract":"<p><p>Liver failure (LF) is serious liver damage caused by multiple factors, resulting in severe impairment or decompensation of liver synthesis, detoxification, metabolism, and biotransformation. The general prognosis of LF is poor with high mortality in non-transplant patients. The clinical treatments for LF are mainly internal medicine comprehensive care, artificial liver support system, and liver transplantation. However, none of the above treatment strategies can solve the problems of all liver failure patients and has its own limitations. Mesenchymal stem cells (MSCs) are a kind of stem cells with multidirectional differentiation potential and paracrine function, which play an important role in immune regulation and tissue regeneration. In recent years, MSCs have shown multiple advantages in the treatment of LF in pre-clinical experiments and clinical trials. In this work, we reviewed the biological characteristics of MSCs, the possible molecular mechanisms of MSCs in the treatment of liver failure, animal experiments, and clinical application, and also discussed the existing problems of MSCs in the treatment of liver failure.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41172947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioinformatics-based Study on the Effects of Umbilical Cord Mesenchymal Stem Cells on the Aging Retina. 基于生物信息学的脐带间充质干细胞对老化视网膜影响的研究。
Current stem cell research & therapy Pub Date : 2024-01-01 DOI: 10.2174/011574888X277276231215110316
Ya-Hui Shi, Jun-Qi Li, Min-Xu, Yu-Ying Wang, Ting-Hua Wang, Zhong-Fu Zuo, Xue-Zheng Liu
{"title":"Bioinformatics-based Study on the Effects of Umbilical Cord Mesenchymal Stem Cells on the Aging Retina.","authors":"Ya-Hui Shi, Jun-Qi Li, Min-Xu, Yu-Ying Wang, Ting-Hua Wang, Zhong-Fu Zuo, Xue-Zheng Liu","doi":"10.2174/011574888X277276231215110316","DOIUrl":"10.2174/011574888X277276231215110316","url":null,"abstract":"<p><strong>Background: </strong>Retinal aging is one of the common public health problems caused by population aging and has become an important cause of acquired vision loss in adults. The aim of this study was to determine the role of human umbilical cord mesenchymal stem cells (hUCMSCs) in delaying retinal ganglion cell (RGC) aging and part of the network of molecular mechanisms involved.</p><p><strong>Methods: </strong>A retinal ganglion cell senescence model was established <i>in vitro</i> and treated with UCMSC. Successful establishment of the senescence system was demonstrated using β- galactosidase staining. The ameliorative effect of MSC on senescence was demonstrated using CCK8 cell viability and Annexin V-PI apoptosis staining. The relevant targets of RGC, MSC, and senescence were mainly obtained by searching the GeneCards database. The protein interaction network among the relevant targets was constructed using the String database and Cytoscape, and 10 key target genes were calculated based on the MCC algorithm, based on which Gene ontologies (GO) enrichment and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were performed. Changes in relevant target genes were detected using real-time fluorescence quantitative PCR and the mechanism of action of UCMSC was determined by RNA interference.</p><p><strong>Results: </strong>β-galactosidase staining showed that UCMSC significantly reduced the positive results of RGC. The retinal aging process was alleviated. The bioinformatics screen yielded 201 shared genes. 10 key genes were selected by the MCC algorithm, including vascular endothelial growth factor A (VEGFA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), albumin (ALB), interleukin- 6 (IL6), tumor necrosis factor (TNF), tumor protein P53 (TP53), insulin (INS), matrix metalloproteinase 9 (MMP9), epidermal growth factor (EGF), interleukin-1β (IL1B), and enrichment to related transferase activity and kinase activity regulated biological processes involved in oxidative stress and inflammation related pathways. In addition, PCR results showed that all the above molecules were altered in expression after UCMSC involvement.</p><p><strong>Conclusion: </strong>This experiment demonstrated the role of UCMSC in delaying retinal ganglion cell senescence and further elucidated that UCMSC may be associated with the activation of VEGFA, TP53, ALB, GAPDH, IL6, IL1B, MMP9 genes and the inhibition of INS, EGF, and TNF in delaying retinal senescence.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139418833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信