Current stem cell research & therapy最新文献

筛选
英文 中文
Stem Cell Infusion in Brain Cells to Reverse Aging. 干细胞注入大脑细胞逆转衰老。
Current stem cell research & therapy Pub Date : 2025-01-01 DOI: 10.2174/011574888X345183241014094641
Thangavel Lakshmipriya, Subash C B Gopinath
{"title":"Stem Cell Infusion in Brain Cells to Reverse Aging.","authors":"Thangavel Lakshmipriya, Subash C B Gopinath","doi":"10.2174/011574888X345183241014094641","DOIUrl":"https://doi.org/10.2174/011574888X345183241014094641","url":null,"abstract":"","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":"20 3","pages":"229-231"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144059257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular Mechanisms and Pathways of Mesenchymal Stem Cell-mediated Therapy in Brain Cancer. 间充质干细胞介导的脑癌治疗的分子机制和途径。
Current stem cell research & therapy Pub Date : 2025-01-01 DOI: 10.2174/011574888X341525250116052000
Kuldeep Singh, Geetanjali Singh, Jeetendra Kumar Gupta, Alka N Choudhary, Arun Kumar, Divya Jain, Mukesh Chandra Sharma, Shivendra Kumar
{"title":"Molecular Mechanisms and Pathways of Mesenchymal Stem Cell-mediated Therapy in Brain Cancer.","authors":"Kuldeep Singh, Geetanjali Singh, Jeetendra Kumar Gupta, Alka N Choudhary, Arun Kumar, Divya Jain, Mukesh Chandra Sharma, Shivendra Kumar","doi":"10.2174/011574888X341525250116052000","DOIUrl":"10.2174/011574888X341525250116052000","url":null,"abstract":"<p><p>Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic approach in the treatment of brain cancer due to their unique biological properties, including their ability to home tumor sites, modulate the tumor microenvironment, and exert anti-tumor effects. This review delves into the molecular mechanisms and pathways underlying MSC-mediated therapy in brain cancer. We explore the various signalling pathways activated by MSCs that contribute to their therapeutic efficacy, such as the PI3K/Akt, Wnt/β-catenin, and Notch pathways. Additionally, we discuss the role of exosomes and microRNAs secreted by MSCs in mediating anti-tumor effects. The review also addresses the challenges and future directions in optimizing MSC-based therapies for brain cancer, including issues related to MSC sourcing, delivery methods, and potential side effects. Through a comprehensive understanding of these mechanisms and pathways, we aim to highlight the potential of MSCs as a viable therapeutic option for brain cancer and to guide future research in this field.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":" ","pages":"479-493"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143034762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to: The Renoprotective and Anti-Inflammatory Effects of Human Urine-Derived Stem Cells on Acute Kidney Injury Animals. 人尿源性干细胞对急性肾损伤动物的肾保护和抗炎作用的更正。
Current stem cell research & therapy Pub Date : 2025-01-01 DOI: 10.2174/1574888X20999250210163559
Yuanyuan Kuang, Chenyu Fan, Xiaojun Long, Jiajia Zheng, Yunsi Zeng, Yuhui Wei, Jiasheng Zhang, Shuangjin Yu, Tong Chen, Hehuan Ruan, Yi Wang, Ning Na, Yiming Zhou, Jiang Qiu
{"title":"Corrigendum to: The Renoprotective and Anti-Inflammatory Effects of Human Urine-Derived Stem Cells on Acute Kidney Injury Animals.","authors":"Yuanyuan Kuang, Chenyu Fan, Xiaojun Long, Jiajia Zheng, Yunsi Zeng, Yuhui Wei, Jiasheng Zhang, Shuangjin Yu, Tong Chen, Hehuan Ruan, Yi Wang, Ning Na, Yiming Zhou, Jiang Qiu","doi":"10.2174/1574888X20999250210163559","DOIUrl":"https://doi.org/10.2174/1574888X20999250210163559","url":null,"abstract":"<p><p>In the article titled \"The Renoprotective and Anti-Inflammatory Effects of Human Urine-Derived Stem Cells on Acute Kidney Injury Animals\" published in Current Stem Cell Research &amp; Therapy, Volume 20, No. 2, 2025, pp. 203-204 [1], the authors of the article identified errors in the Fig. (3A and B) of the manuscript. Accordingly, they have revised the Figure legend and Results section. Authors would like to emphasize that this mistake does not affect the overall conclusions of this study. The original article can be found online at: https://www.eurekaselect.com/article/139517 We regret the error and apologize to readers.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":"20 5","pages":"605-608"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144319008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-cell Technology in Stem Cell Research. 干细胞研究中的单细胞技术。
Current stem cell research & therapy Pub Date : 2025-01-01 DOI: 10.2174/011574888X265479231127065541
Ali Golchin, Forough Shams, Faezeh Moradi, Amin Ebrahimi Sadrabadi, Shima Parviz, Shahriar Alipour, Parviz Ranjbarvan, Yaser Hemmati, Maryam Rahnama, Yousef Rasmi, Shiva Gholizadeh-Ghaleh Aziz
{"title":"Single-cell Technology in Stem Cell Research.","authors":"Ali Golchin, Forough Shams, Faezeh Moradi, Amin Ebrahimi Sadrabadi, Shima Parviz, Shahriar Alipour, Parviz Ranjbarvan, Yaser Hemmati, Maryam Rahnama, Yousef Rasmi, Shiva Gholizadeh-Ghaleh Aziz","doi":"10.2174/011574888X265479231127065541","DOIUrl":"10.2174/011574888X265479231127065541","url":null,"abstract":"<p><p>Single-cell technology (SCT), which enables the examination of the fundamental units comprising biological organs, tissues, and cells, has emerged as a powerful tool, particularly in the field of biology, with a profound impact on stem cell research. This innovative technology opens new pathways for acquiring cell-specific data and gaining insights into the molecular pathways governing organ function and biology. SCT is not only frequently used to explore rare and diverse cell types, including stem cells, but it also unveils the intricacies of cellular diversity and dynamics. This perspective, crucial for advancing stem cell research, facilitates non-invasive analyses of molecular dynamics and cellular functions over time. Despite numerous investigations into potential stem cell therapies for genetic disorders, degenerative conditions, and severe injuries, the number of approved stem cell-based treatments remains limited. This limitation is attributed to the various heterogeneities present among stem cell sources, hindering their widespread clinical utilization. Furthermore, stem cell research is intimately connected with cutting-edge technologies, such as microfluidic organoids, CRISPR technology, and cell/tissue engineering. Each strategy developed to overcome the constraints of stem cell research has the potential to significantly impact advanced stem cell therapies. Drawing on the advantages and progress achieved through SCT-based approaches, this study aims to provide an overview of the advancements and concepts associated with the utilization of SCT in stem cell research and its related fields.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":" ","pages":"9-32"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139513924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction of a Cancer Stem Cell related Histone Acetylation Regulatory Genes Prognostic Model for Hepatocellular Carcinoma via Bioinformatics Analysis: Implications for Tumor Chemotherapy and Immunity. 通过生物信息学分析构建与癌症干细胞相关的肝细胞癌组蛋白乙酰化调控基因预后模型:肿瘤化疗和免疫的意义
Current stem cell research & therapy Pub Date : 2025-01-01 DOI: 10.2174/011574888X305642240327041753
Qian Dai, Jie Zhu, Jing Yang, Chun-Yan Zhang, Wen-Jing Yang, Bai-Shen Pan, Xin-Rong Yang, Wei Guo, Bei-Li Wang
{"title":"Construction of a Cancer Stem Cell related Histone Acetylation Regulatory Genes Prognostic Model for Hepatocellular Carcinoma via Bioinformatics Analysis: Implications for Tumor Chemotherapy and Immunity.","authors":"Qian Dai, Jie Zhu, Jing Yang, Chun-Yan Zhang, Wen-Jing Yang, Bai-Shen Pan, Xin-Rong Yang, Wei Guo, Bei-Li Wang","doi":"10.2174/011574888X305642240327041753","DOIUrl":"10.2174/011574888X305642240327041753","url":null,"abstract":"<p><strong>Background: </strong>Cancer stem cells (CSC) play an important role in the development of Liver Hepatocellular Carcinoma (LIHC). However, the regulatory mechanisms between acetylation- associated genes (HAGs) and liver cancer stem cells remain unclear.</p><p><strong>Objective: </strong>To identify a set of histone acetylation genes (HAGs) with close associations to liver cancer stem cells (LCSCs), and to construct a prognostic model that facilitates more accurate prognosis assessments for LIHC patients.</p><p><strong>Methods: </strong>LIHC expression data were downloaded from the public databases. Using mRNA expression- based stemness indices (mRNAsi) inferred by One-Class Logistic Regression (OCLR), Differentially Expressed Genes (DEGs) (mRNAsi-High VS. mRNAsi-Low groups) were intersected with DEGs (LIHC VS. normal samples), as well as histone acetylation-associated genes (HAGs), to obtain mRNAsi-HAGs. A risk model was constructed employing the prognostic genes, which were acquired through univariate Cox and Least Shrinkage and Selection Operator (LASSO) regression analyses. Subsequently, independent prognostic factors were identified via univariate and multivariate Cox regression analyses and then a nomogram for prediction of LIHC survival was developed. Additionally, immune infiltration and drug sensitivity analysis were performed to explore the relationships between prognostic genes and immune cells. Finally, the expressions of selected mRNAsi-HAGs were validated in the LIHC tumor sphere by quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) assay and western blot analysis.</p><p><strong>Results: </strong>Among 13 identified mRNAsi-HAGs, 3 prognostic genes (HDAC1, HDAC11, and HAT1) were selected to construct a risk model (mRNAsi-HAGs risk score = 0.02 * HDAC1 + 0.09 * HAT1 + 0.05 * HDAC11). T-stage, mRNAsi, and mRNAsi-HAGs risk scores were identified as independent prognostic factors to construct the nomogram, which was proved to predict the survival probability of LIHC patients effectively. We subsequently observed strongly positive correlations between mRNAsi-HAGs risk score and tumor-infiltrating T cells, B cells and macrophages/monocytes. Moreover, we found 8 drugs (Mitomycin C, IPA 3, FTI 277, Bleomycin, Tipifarnib, GSK 650394, AICAR and EHT 1864) had significant correlations with mRNAsi-HAGs risk scores. The expression of HDAC1 and HDAC11 was higher in CSC-like cells in the tumor sphere.</p><p><strong>Conclusion: </strong>This study constructed a mRNAsi and HAGs-related prognostic model, which has implications for potential immunotherapy and drug treatment of LIHC.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":" ","pages":"103-122"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140338275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Application of Photobiomodulation on Mesenchymal Stem Cells and its Potential Use for Tenocyte Differentiation. 光生物调制在间充质干细胞上的应用及其在腱细胞分化中的潜在用途。
Current stem cell research & therapy Pub Date : 2025-01-01 DOI: 10.2174/011574888X295488240319111911
Brendon Roets, Heidi Abrahamse, Anine Crous
{"title":"The Application of Photobiomodulation on Mesenchymal Stem Cells and its Potential Use for Tenocyte Differentiation.","authors":"Brendon Roets, Heidi Abrahamse, Anine Crous","doi":"10.2174/011574888X295488240319111911","DOIUrl":"10.2174/011574888X295488240319111911","url":null,"abstract":"<p><p>Tendinopathy is a prevalent and debilitating musculoskeletal disorder. Uncertainty remains regarding its pathophysiology, but it is believed to be a combination of inflammation, damage, degenerative changes, and unsuccessful repair mechanisms. Cell-based therapy is an emerging regenerative medicine modality that uses mesenchymal stem cells (MSCs), their progeny or exosomes to promote tendon healing and regeneration. It is based on the fact that MSCs can be differentiated into tenocytes, the major cell type within tendons, and facilitate tendon repair. Photobiomodulation (PBM) is a non-invasive and potentially promising therapeutic technique that utilizes low-level light to alter intracellular processes and promote tissue healing and regeneration. Recent studies have examined the potential for PBM to improve MSC therapy use in tendinopathy by promoting viability, proliferation, and differentiation. As well as enhance tendon regeneration. This review focuses on Photobiomodulation and MSC therapy applications in regenerative medicine and their potential for tendon tissue engineering.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":" ","pages":"232-245"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141285678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing the Impact of Stem Cell-based Therapy on Periodontal Health: A Meta-analysis of Clinical Studies. 评估干细胞疗法对牙周健康的影响:临床研究的元分析。
Current stem cell research & therapy Pub Date : 2025-01-01 DOI: 10.2174/011574888X294900240130095058
Yu-Han Shao, Yi Song, Qiao-Li Feng, Yan Deng, Tao Tang
{"title":"Assessing the Impact of Stem Cell-based Therapy on Periodontal Health: A Meta-analysis of Clinical Studies.","authors":"Yu-Han Shao, Yi Song, Qiao-Li Feng, Yan Deng, Tao Tang","doi":"10.2174/011574888X294900240130095058","DOIUrl":"10.2174/011574888X294900240130095058","url":null,"abstract":"<p><strong>Objective: </strong>While clinical trials exploring stem cells for regenerating periodontal tissues have demonstrated positive results, there is a limited availability of systematic literature reviews on this subject. To gain a more comprehensive understanding of stem cell interventions in periodontal regeneration, this meta-analysis is undertaken to assess the beneficial effects of stem cells in human periodontal regeneration.</p><p><strong>Methods: </strong>\"PubMed,\" \"PubMed Central,\" \"Web of Science,\" \"Embase Scopus\" \"Wanfang,\" and \"CNKI,\" were used to extract clinical studies related to the utilization of stem cells in repairing periodontal tissue defects. This search included studies published up until October 5, 2023. The inclusion criteria required the studies to compare the efficacy of stem cell-based therapy with stem cell-free therapy for regenerating periodontal tissues. Meta-analysis was conducted using Review Manager software (version 5.4).</p><p><strong>Results: </strong>This meta-analysis synthesized findings from 15 selected studies investigating the impact of stem cell interventions on periodontal tissue regeneration. The \"stem cell\" group displayed a substantial reduction in clinical attachment level (CAL) compared to the \"control\" group within 3 to 12 months post-surgery. However, no significant differences in CAL gain were found between groups. Probing pocket depth (PPD) significantly decreased in the \"stem cell\" group compared to the \"control\" group, particularly for follow-up periods exceeding 6 months, and dental stem cell treatment exhibited notable improvements. Conversely, no significant differences were observed in PPD reduction. Gingival recession (GR) significantly decreased in the \"stem cell\" group compared to the \"control\" group at 3 to 12 months post-surgery. No significant differences were observed in GR reduction between groups. No significant differences were identified in cementoenamel junction-bone distance reduction, infrabony defect reduction, or bone mineral density increase between the two groups. Furthermore, no significant changes were observed in the gingival index, plaque index, or width of keratinized gingiva.</p><p><strong>Conclusion: </strong>In conclusion, while stem cell-based therapy offers promising prospects for periodontal defect treatment, there are notable limitations in the current body of research. Larger, multicenter, double-blind RCTs with robust methodologies are needed to provide more reliable evidence for stem cell-based intervention in periodontitis.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":" ","pages":"246-265"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139725423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoparticles Perspective in Skin Tissue Engineering: Current Concepts and Future Outlook. 纳米粒子在皮肤组织工程中的应用:当前概念与未来展望。
Current stem cell research & therapy Pub Date : 2025-01-01 DOI: 10.2174/011574888X291345240110102648
Maryam Kaviani, Bita Geramizadeh
{"title":"Nanoparticles Perspective in Skin Tissue Engineering: Current Concepts and Future Outlook.","authors":"Maryam Kaviani, Bita Geramizadeh","doi":"10.2174/011574888X291345240110102648","DOIUrl":"10.2174/011574888X291345240110102648","url":null,"abstract":"<p><p>Nanotechnology seems to provide solutions to the unresolved complications in skin tissue engineering. According to the broad function of nanoparticles, this review article is intended to build a perspective for future success in skin tissue engineering. In the present review, recent studies were reviewed, and essential benefits and challenging issues regarding the application of nanoparticles in skin tissue engineering were summarized. Previous studies indicated that nanoparticles can play essential roles in the improvement of engineered skin. Bio-inspired design of an engineered skin structure first needs to understand the native tissue and mimic that in laboratory conditions. Moreover, a fundamental comprehension of the nanoparticles and their related effects on the final structure can guide researchers in recruiting appropriate nanoparticles. Attention to essential details, including the designation of nanoparticle type according to the scaffold, how to prepare the nanoparticles, and what concentration to use, is critical for the application of nanoparticles to become a reality. In conclusion, nanoparticles were applied to promote scaffold characteristics and angiogenesis, improve cell behavior, provide antimicrobial conditions, and cell tracking.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":" ","pages":"2-8"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139570977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conditioned Medium Treatment for the Improvement of Functional Recovery after Spinal Cord Injury: A Meta-Analysis Study. 改善脊髓损伤后功能恢复的条件介质治疗:一项元分析研究。
Current stem cell research & therapy Pub Date : 2025-01-01 DOI: 10.2174/011574888X283713240129095031
Razieh Hajisoltani, Mona Taghizadeh, Michael R Hamblin, Fatemeh Ramezani
{"title":"Conditioned Medium Treatment for the Improvement of Functional Recovery after Spinal Cord Injury: A Meta-Analysis Study.","authors":"Razieh Hajisoltani, Mona Taghizadeh, Michael R Hamblin, Fatemeh Ramezani","doi":"10.2174/011574888X283713240129095031","DOIUrl":"10.2174/011574888X283713240129095031","url":null,"abstract":"<p><strong>Background: </strong>While there is no certain treatment for spinal cord injury (SCI), stem cellbased therapy may be an attractive alternative, but the survival and differentiation of cells in the host tissue are poor. Conditioned medium (CM) has several beneficial effects on cells.</p><p><strong>Objective: </strong>In this meta-analysis study, we examined the effect of CM on SCI treatment.</p><p><strong>Methods: </strong>After searching on MEDLINE, SCOPUS, EMBASE, and Web of Science, first and secondary screening were performed based on title, abstract, and full text. The data were extracted from the included studies, and meta-analysis was performed using STATA.14 software. A standardized mean difference (SMD) with a 95% confidence interval was used to report findings. Quality control and subgroup analysis were also performed.</p><p><strong>Results: </strong>The results from 52 articles and 61 separate experiments showed that CM had a significantly strong effect on improving motor function after SCI (SMD = 2.58; 95% CI: 2.17 to 2.98; p < 0.001) and also analysis of data from 12 articles demonstrated that CM reduced the expression of GFAP marker (SMD = -4.16; p < 0.0001) compared to SCI group without any treatment. Subgroup analysis showed that treatment with CM of neural stem cells was better than CM of mesenchymal stem cells. It was more effective after a mild lesion than a moderate or severe one. The improvement was more pronounced with <4 weeks than >4 weeks follow-up.</p><p><strong>Conclusion: </strong>CM had a significant effect in improving motor function after SCI, especially in cases of mild lesions. It has been observed that if CM originates from the neural stem cells, it has a more significant effect than mesenchymal cells.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":" ","pages":"389-408"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139998681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mesenchymal Stem Cells: An Effective Therapy Regime for Oral Cancer. 间充质干细胞:口腔癌的有效治疗方案。
Current stem cell research & therapy Pub Date : 2025-01-01 DOI: 10.2174/011574888X358204241208161841
Thangavel Lakshmipriya, Subash C B Gopinath
{"title":"Mesenchymal Stem Cells: An Effective Therapy Regime for Oral Cancer.","authors":"Thangavel Lakshmipriya, Subash C B Gopinath","doi":"10.2174/011574888X358204241208161841","DOIUrl":"10.2174/011574888X358204241208161841","url":null,"abstract":"","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":" ","pages":"357-359"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142820436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信