Shrishti Madhan, Anisha Mehta, Anushka Santoshkumar, Srisri Satishkarthik, K N Aruljothi
{"title":"干细胞干预治疗阿尔茨海默病。","authors":"Shrishti Madhan, Anisha Mehta, Anushka Santoshkumar, Srisri Satishkarthik, K N Aruljothi","doi":"10.2174/011574888X308941240507050855","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD), an inexorable neurodegenerative ailment marked by cognitive impairment and neuropsychiatric manifestations, stands as the foremost prevailing form of dementia in the geriatric population. Its pathological signs include the aggregation of amyloid proteins, hyperphosphorylation of tau proteins, and the consequential loss of neural cells. The etiology of AD has prompted the formulation of numerous conjectures, each endeavoring to elucidate its pathogenesis. While a subset of therapeutic agents has displayed clinical efficacy in AD patients, a significant proportion has encountered disappointment. Notably, the extent of neural cell depletion bears a direct correlation with the disease's progressive severity. However, the absence of efficacious therapeutic remedies for neurodegenerative afflictions engenders a substantial societal burden and exerts a notable economic toll. In the past two decades, the realm of regenerative cell therapy, referred to as stem cell therapy, has unfolded as an avenue for the exploration of profoundly innovative approaches to treat neurodegenerative conditions. This promise is underpinned by the remarkable capacity of stem cells to remediate compromised neural tissue by means of cell replacement, to cultivate an environment conducive to regeneration, and to shield extant healthy neuronal and glial components from further degradation. Thus, this review aims to delve into the current knowledge of stem cell-based therapies and future possibilities in this domain.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stem Cell Interventions in the Treatment of Alzheimer's Disease.\",\"authors\":\"Shrishti Madhan, Anisha Mehta, Anushka Santoshkumar, Srisri Satishkarthik, K N Aruljothi\",\"doi\":\"10.2174/011574888X308941240507050855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease (AD), an inexorable neurodegenerative ailment marked by cognitive impairment and neuropsychiatric manifestations, stands as the foremost prevailing form of dementia in the geriatric population. Its pathological signs include the aggregation of amyloid proteins, hyperphosphorylation of tau proteins, and the consequential loss of neural cells. The etiology of AD has prompted the formulation of numerous conjectures, each endeavoring to elucidate its pathogenesis. While a subset of therapeutic agents has displayed clinical efficacy in AD patients, a significant proportion has encountered disappointment. Notably, the extent of neural cell depletion bears a direct correlation with the disease's progressive severity. However, the absence of efficacious therapeutic remedies for neurodegenerative afflictions engenders a substantial societal burden and exerts a notable economic toll. In the past two decades, the realm of regenerative cell therapy, referred to as stem cell therapy, has unfolded as an avenue for the exploration of profoundly innovative approaches to treat neurodegenerative conditions. This promise is underpinned by the remarkable capacity of stem cells to remediate compromised neural tissue by means of cell replacement, to cultivate an environment conducive to regeneration, and to shield extant healthy neuronal and glial components from further degradation. Thus, this review aims to delve into the current knowledge of stem cell-based therapies and future possibilities in this domain.</p>\",\"PeriodicalId\":93971,\"journal\":{\"name\":\"Current stem cell research & therapy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current stem cell research & therapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/011574888X308941240507050855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current stem cell research & therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/011574888X308941240507050855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
阿尔茨海默病(AD)是一种难以治愈的神经退行性疾病,以认知障碍和神经精神症状为特征,是老年痴呆症中最常见的一种。其病理表现包括淀粉样蛋白的聚集、tau 蛋白的过度磷酸化以及随之而来的神经细胞的丧失。关于注意力缺失症的病因,人们提出了许多猜想,每一种猜想都试图阐明其发病机制。虽然一部分治疗药物对 AD 患者有临床疗效,但也有相当一部分治疗药物令人失望。值得注意的是,神经细胞耗竭的程度与疾病的进展严重程度直接相关。然而,神经退行性疾病缺乏有效的治疗方法会造成巨大的社会负担和显著的经济损失。在过去的二十年里,再生细胞疗法(又称干细胞疗法)已成为探索治疗神经退行性疾病的深层创新方法的一个途径。干细胞具有卓越的能力,可通过细胞替代修复受损的神经组织,培养有利于再生的环境,并保护现有的健康神经元和胶质细胞成分,防止其进一步退化。因此,本综述旨在深入探讨干细胞疗法的现有知识和这一领域的未来可能性。
Stem Cell Interventions in the Treatment of Alzheimer's Disease.
Alzheimer's disease (AD), an inexorable neurodegenerative ailment marked by cognitive impairment and neuropsychiatric manifestations, stands as the foremost prevailing form of dementia in the geriatric population. Its pathological signs include the aggregation of amyloid proteins, hyperphosphorylation of tau proteins, and the consequential loss of neural cells. The etiology of AD has prompted the formulation of numerous conjectures, each endeavoring to elucidate its pathogenesis. While a subset of therapeutic agents has displayed clinical efficacy in AD patients, a significant proportion has encountered disappointment. Notably, the extent of neural cell depletion bears a direct correlation with the disease's progressive severity. However, the absence of efficacious therapeutic remedies for neurodegenerative afflictions engenders a substantial societal burden and exerts a notable economic toll. In the past two decades, the realm of regenerative cell therapy, referred to as stem cell therapy, has unfolded as an avenue for the exploration of profoundly innovative approaches to treat neurodegenerative conditions. This promise is underpinned by the remarkable capacity of stem cells to remediate compromised neural tissue by means of cell replacement, to cultivate an environment conducive to regeneration, and to shield extant healthy neuronal and glial components from further degradation. Thus, this review aims to delve into the current knowledge of stem cell-based therapies and future possibilities in this domain.