Li-Lan Huang, Ji Yang, Yue-Yuan Hou, Yi-Hua Bai, Hong-Ying Jiang
{"title":"Bone Marrow Mesenchymal Stem Cells Ameliorate Diabetes and Diabetic Renal Fibrosis by Modulating the Inflammatory Factor IL-11.","authors":"Li-Lan Huang, Ji Yang, Yue-Yuan Hou, Yi-Hua Bai, Hong-Ying Jiang","doi":"10.2174/011574888X348254241216171655","DOIUrl":"https://doi.org/10.2174/011574888X348254241216171655","url":null,"abstract":"<p><strong>Objective: </strong>This study aims to explore the therapeutic potential of mesenchymal stem cells (MSC) in treating diabetic nephropathy (DN) by investigating their effect on IL-11 modulation in a mouse model.</p><p><strong>Methods: </strong>The effects of MSC therapy on DN were examined both in vivo and in vitro. Sixty adult male C57BL/6 mice were divided into the streptozotocin (STZ) diabetes (T1D) and the high-fat diet diabetes (T2D) models, with both groups receiving MSC treatment or saline for 4 or 8 weeks. Blood glucose, serum urea, interleukin-11 (IL-11), and kidney fibrosis markers were measured. Additionally, western blotting was used to assess levels of Type I and III collagen, E-Cadherin, α- smooth muscle actin (α-SMA), Vimentin, and ferroptosis suppressor protein 1 (FSP-1).</p><p><strong>Results: </strong>MSC-treated T1D and T2D mice showed reduced blood glucose, serum urea, IL-11, TGF-β, and fibrosis markers (type I and III collagen, α-SMA, Vimentin, FSP-1), alongside increased E-Cadherin expression. Similar effects were observed in vitro using mouse glomerular epithelial cells, confirming MSC-mediated suppression of fibrosis pathways.</p><p><strong>Conclusion: </strong>MSC therapy improves nephropathy, likely by inhibiting IL-11 and reducing fibrosis- related markers, making it a promising treatment for DN.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142934016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huiting Qu, Shoukai He, Jie He, Chengfei Wang, Kewei Wang, Chao Deng, Ting Liu, Haibing Hua, Youyi Liu
{"title":"Potential Future Therapeutic Application of Mesenchymal Stem Cell-derived Exosomes in Ulcerative Colitis.","authors":"Huiting Qu, Shoukai He, Jie He, Chengfei Wang, Kewei Wang, Chao Deng, Ting Liu, Haibing Hua, Youyi Liu","doi":"10.2174/011574888X340609241220053638","DOIUrl":"https://doi.org/10.2174/011574888X340609241220053638","url":null,"abstract":"<p><p>Exosomes, a subclass of Extracellular Vesicles (EVs), are pivotal mediators of intercellular communication. Exosomes derived from Mesenchymal Stem Cells (MSCs) exhibit anti-inflammatory and immunomodulatory activities similar to that of their parental cells, which makes them a cell-free treatment strategy against Ulcerative Colitis (UC). Engineered MSC Exosomes (MSC-Exos) hold the potential to impart multifunctionality to MSCs and optimize their therapeutic effectiveness. This study provides a comprehensive overview of the research progress, mechanisms of action, and potential applications of MSC-Exos and engineered MSC-Exos in the treatment of UC.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142934061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuting Cao, Jinyuan Huang, Xiaoyin Fan, Yinmei Dai
{"title":"Knowledge Mapping of Stem Cell Therapy for Premature Ovarian Insufficiency: A Bibliometric Analysis (2000-2023).","authors":"Yuting Cao, Jinyuan Huang, Xiaoyin Fan, Yinmei Dai","doi":"10.2174/011574888X329310241206105808","DOIUrl":"https://doi.org/10.2174/011574888X329310241206105808","url":null,"abstract":"<p><strong>Background: </strong>Premature Ovarian Failure (POI), a prevalent gynecological, endocrine disease, significantly impairs the reproductive health of women of childbearing age and presents a formidable challenge to clinicians. Until now, there has been a lack of effective treatments to fundamentally improve ovarian function in patients with POI. Stem cell therapy has emerged as a promising treatment in the field of POI, with notable research progress achieved to date.</p><p><strong>Objective: </strong>This review sought to analyze the current status and hotspots of research on stem cell therapy for POI, forecasting future directions through bibliometrics.</p><p><strong>Methods: </strong>Research related to stem cell therapy for POI from 2000 to 2023 was searched in the Web of Science Core Collection (WOSCC) database by setting subject-term, and the literature was analyzed econometrically using VOSviewer, CiteSpace, and the R package \"bibliometrix.\"</p><p><strong>Results: </strong>According to our search and screening strategy, 203 pieces of literature related to stem cell therapy for POI were obtained and analyzed. There is a marked annual increase in publications, with a particularly rapid ascent in recent years. China has become the most prolific country in this field, with 136 publications. Shanghai Jiao Tong University ranked first among many universities and institutions in terms of the number of publications and citations. Stem Cell Research & Therapy was the most popular and influential journal in the field of stem cell therapy for POI. Lai Dongmei has published the most papers, while Liu Te boasts the highest frequency of co-citations. Investigation into the mechanisms of exosomes derived from stem cells and their associated signaling pathways is anticipated to be a crucial research topic in stem cell therapy for POI.</p><p><strong>Conclusion: </strong>This review offers the first comprehensive and systematic analysis of the field of stem cell therapy for POI, with a visual representation of the findings. By summarizing the current status and projecting forthcoming trends, this study aims to offer guidance and a reference for scholars in the field.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142934055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Prince Ahad Mir, Md Sadique Hussain, Murtaza Ahmad Khanday, Roohi Mohi-Ud-Din, Faheem Hyder Pottoo, Reyaz Hasssan Mir
{"title":"Immunomodulatory Roles of Mesenchymal Stem Cell-derived Extracellular Vesicles: A Promising Therapeutic Approach for Autoimmune Diseases.","authors":"Prince Ahad Mir, Md Sadique Hussain, Murtaza Ahmad Khanday, Roohi Mohi-Ud-Din, Faheem Hyder Pottoo, Reyaz Hasssan Mir","doi":"10.2174/011574888X341781241216044130","DOIUrl":"https://doi.org/10.2174/011574888X341781241216044130","url":null,"abstract":"<p><p>Autoimmune diseases pose a significant challenge due to their complex pathogenesis and rising prevalence. Traditional therapies are often limited by systemic side effects, immunosuppression, and lack of long-term efficacy. Mesenchymal stem cells (MSCs) have demonstrated immunomodulatory properties, primarily through the secretion of extracellular vesicles (EVs), which are now recognized as potent mediators of immune regulation. MSC-derived EVs carry bioactive molecules such as microRNAs, proteins, and lipids that influence key immune pathways, making them a promising therapeutic avenue for autoimmune diseases. This review critically examines the immunomodulatory mechanisms of MSC-derived EVs, focusing on their role in regulating T cells, B cells, and macrophages, which are central to autoimmune pathology. We explore recent preclinical and clinical studies that highlight the ability of MSC-derived EVs to reduce inflammation, promote immune tolerance, and restore tissue homeostasis in autoimmune settings. Furthermore, we discuss the advantages of EV-based therapy over MSC-based therapies, including improved safety profiles, lower immunogenicity, and scalability for clinical application. By evaluating the current landscape of MSC-derived EV research, we identify key gaps and propose innovative strategies to optimize EVbased therapies for autoimmune diseases. These strategies include engineering EVs to enhance their specificity and therapeutic efficacy, as well as integrating them with biomaterials for targeted delivery. Our review aims to provide a forward-looking perspective on the potential of MSC-derived EVs as a novel therapeutic approach, moving beyond traditional cell-based therapies to offer more precise and personalized treatment options for autoimmune diseases.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142934020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Intraarticular Injection of Stem Cell and Related Exosome Targeting Synovial Macrophages in Osteoarthritis.","authors":"Zheng Li, Yuanchi Huang, Weisong Zhang, Wensen Jing","doi":"10.2174/011574888X338318241213055616","DOIUrl":"https://doi.org/10.2174/011574888X338318241213055616","url":null,"abstract":"<p><p>Osteoarthritis is a costly and debilitating condition, especially as the population ages and more people are affected. The primary osteoarthritis targets in the joint cavity are chondrocytes and synovial cells. Researchers are increasingly convinced that macrophages play a crucial role in the development or therapy of osteoarthritis despite being largely ignored in earlier studies due to their capacity to switch from a pro-inflammatory to an anti-inflammatory phenotype. Stem cell or similar extracellular vesicle intraarticular injection offers fresh promise for treating osteoarthritis. However, the mechanism by which this works needs further investigation. It is important to investigate the intricate cellular interactions between mesenchymal stem cells (MSCs) and macrophages. Emerging routes using extracellular vesicles (EVs) are garnering more and more attention in intercellular communication, which has historically focused on cytokines and soluble mediators. Therefore, we focus on the polarization of macrophages as a primary consideration in our study of stem cells and associated EVs utilization in treating knee osteoarthritis.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142934039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hui-Qi Wang, Min Guo, Jie-Qiong Lu, Ling-Yun Chen, Feng Liang, Peng-Peng Huang, Kai-Yi Song
{"title":"Aerobic Training Alleviates Muscle Atrophy by Promoting the Proliferation of Skeletal Muscle Satellite Cells in Myotonic Dystrophy Type 1 by Inhibiting Glycolysis via the Upregulation of MBNL1.","authors":"Hui-Qi Wang, Min Guo, Jie-Qiong Lu, Ling-Yun Chen, Feng Liang, Peng-Peng Huang, Kai-Yi Song","doi":"10.2174/011574888X360503241214045130","DOIUrl":"10.2174/011574888X360503241214045130","url":null,"abstract":"<p><strong>Background: </strong>Skeletal muscle atrophy in myotonic dystrophy type 1 (DM1) is caused by abnormal skeletal muscle satellite cell (SSC) proliferation due to increased glycolysis, which impairs muscle regeneration. In DM1, RNA foci sequester muscleblind-like protein 1 (MBNL1) in the nucleus, inhibiting its role in regulating SSC proliferation. Aerobic training reduces glycolysis and increases SSC proliferation and muscle fiber volume. This study aimed to investigate whether aerobic training prevents muscle atrophy in DM1 through the regulation of glycolysis via MBNL1.</p><p><strong>Methods: </strong>In this study, we used the HSALR transgenic mice (DM1 mice model) to investigate the effects of aerobic training on skeletal muscle atrophy and its molecular mechanisms. HSALR mice were subjected to 4 weeks of aerobic training. After aerobic training, hindlimb grip, and myofiber mean cross-sectional area (CSA) detected by haematoxylin and eosin (HE) staining were performed. In DM1 primary SSCs, cell proliferation was assessed using Pax7 and MyoD immunofluorescence and CCK-8 assays, RNA foci were detected by RNA fluorescence in situ hybridization, and total MBNL1 expression was measured by western blot. We also used lentivirus to knock down MBNL1 in DM1 primary SSCs and performed RNA sequencing and extracellular acidification rate (ECAR). Furthermore, glycolysis detected by ECAR and oxygen consumption rate (OCR) assays were performed in WT, Sedentary, and Training group SSCs. Glycolysis was inhibited with shikonin, a glycolysis inhibitor, and the proliferation of DM1 SSCs was subsequently evaluated. Finally, we engineered an adeno-associated virus specifically targeting MBNL1 to knock down MBNL1 in DM1 mice. Subsequently, we assessed hindlimb grip strength and CSA in vivo, as well as the glycolytic capacity and proliferative capacity of DM1 SSCs in vitro.</p><p><strong>Results: </strong>Aerobic training increased hindlimb grip strength and the average myofiber CSA in DM1 mice. Additionally, aerobic training reduced RNA foci, upregulated MBNL1, and promoted SSC proliferation. Gene-set enrichment analysis (GSEA) indicated that glycolytic processes were enriched following the knockdown of MBNL1. Furthermore, ECAR showed glycolysis was enhanced after the knockdown of MBNL1. Aerobic training reduced elevated glycolysis in DM1 mice and primary SSCs. Treatment with shikonin promoted DM1 SSC proliferation. However, MBNL1 knockdown was shown to abolish the reduced glycolysis and increased proliferation capability of SSCs due to aerobic training.</p><p><strong>Conclusion: </strong>Taken together, aerobic training suppresses glycolysis in SSCs via the upregulation of MBNL1, thereby enhancing SSC proliferation and alleviating muscle atrophy.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142879186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stem Cells Derived From Human Deciduous Exfoliated Teeth Ameliorate Adriamycin-Induced Nephropathy In Rats By Modulating The Th17/Treg Balance.","authors":"Yuyang Dai, Borui Tang, Xiuli Zhao","doi":"10.2174/011574888X336035241209065513","DOIUrl":"https://doi.org/10.2174/011574888X336035241209065513","url":null,"abstract":"<p><strong>Background: </strong>Idiopathic Nephrotic Syndrome (INS) is a common kidney disease in children, and the main clinical manifestations are hypoproteinaemia, proteinuria, hyperlipidaemia, and oedema. Mesenchymal Stem Cells (MSCs) are involved in tissue repair, protection against fibrosis, and immune modulation but have rarely been studied in INS.</p><p><strong>Objective: </strong>This study aimed to explore the therapeutic potential of stem cells derived from human exfoliated deciduous teeth (SHEDs) in INS using an adriamycin-induced nephropathy (AN) rat model.</p><p><strong>Methods: </strong>AN was induced in Sprague‒Dawley rats, and SHEDs were transplanted via the tail vein in single (SHED-s) and multidose (SHED-m) regimens. Cell migration assays were used to track the SHED distribution. Weight, urine protein, and serum biochemical assays were also performed. HE and Masson staining were used to observe glomerular and tubular damage, as well as the degree of fibrosis. Immunohistochemistry was used to label T lymphocytes and podocytes, and structural changes in podocytes were observed by electron microscopy. ELISA was used to measure the levels of inflammatory factors. Flow cytometry was used to analyse the balance of Th17 cells and Tregs. The mRNA expression of Th17- and Treg-associated cytokines and specific transcription factors was examined by RT‒PCR.</p><p><strong>Results: </strong>SHEDs directly migrated to damaged tissues, suggesting a targeted therapeutic effect. SHED transplantation significantly reduced proteinuria and reversed biochemical abnormalities in rats with AN. Both single and multidose SHED treatments could inhibit glomerular and tubular damage and delay the progression of fibrosis caused by adriamycin. SHEDs exerted a protective effect on podocytes. Additionally, this treatment inhibited inflammatory responses and corrected immune imbalances, as evidenced by decreased T lymphocyte infiltration, reduced serum levels of IL-6, TNF-a, and IL-1β, and modulation of the Th17/Treg balance.</p><p><strong>Conclusion: </strong>In the AN rat model, SHED partly suppressed the development of inflammation and alleviated kidney injury, and immune regulation may be the underlying mechanism.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142879187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohsen Ghiasi, Mohammad Hajipur, Marzieh Ghollasi, Abdolreza Dayani, Mohammad-Taher Moradi, Ali Salimi
{"title":"Inducing Neural Fate: The Impact of Phenylacetate and Calcium on Human Adipose-Derived Mesenchymal Stem Cells Differentiation.","authors":"Mohsen Ghiasi, Mohammad Hajipur, Marzieh Ghollasi, Abdolreza Dayani, Mohammad-Taher Moradi, Ali Salimi","doi":"10.2174/011574888X355333241203114713","DOIUrl":"https://doi.org/10.2174/011574888X355333241203114713","url":null,"abstract":"<p><strong>Introduction: </strong>Human adipose-derived stem cells (hADSCs) are considered a promising source for cell replacement therapy in degenerative and traumatic conditions. This study explores the effects of phenylacetate and calcium on the neural differentiation of hADSCs for regenerative medicine. We assessed cell viability and cytotoxicity using the MTT assay, revealing that treatment with 1μM phenylacetate significantly enhanced cell viability compared to control groups over five days, while higher concentrations resulted in cytotoxic effects.</p><p><strong>Method: </strong>Additionally, qualitative analysis through Acridine orange/ethidium bromide (AO/EB) staining indicated normal cellular characteristics at lower phenylacetate concentrations, whereas higher doses led to observable cell death. A subsequent evaluation of intracellular calcium levels demonstrated a significant increase when hADSCs were treated with both phenylacetate and calcium.</p><p><strong>Results: </strong>The neural differentiation potential was further assessed through the relative quantification of neuronal-specific genes, showing marked upregulation of NSE, Oligo-2, β-tubulin III, and MAP-2 in all treatment groups compared to controls. Immunohistochemistry confirmed elevated protein expression of neural markers in cultures supplemented with phenylacetate and calcium.</p><p><strong>Conclusion: </strong>These findings suggest that phenylacetate, particularly in conjunction with calcium, enhances the neural differentiation of hADSCs, highlighting its potential utility in regenerative medicine strategies targeting neurodegenerative conditions.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142831439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ningning Mi, Xibin Liu, Yuhua Gao, Chunyu Bai, Xiangchen Li
{"title":"Probing the Mesenchymal Stem Cell Aging through In silico Assessment of Extracellular Vesicle-mediated miRNAs.","authors":"Ningning Mi, Xibin Liu, Yuhua Gao, Chunyu Bai, Xiangchen Li","doi":"10.2174/011574888X342545241202050636","DOIUrl":"https://doi.org/10.2174/011574888X342545241202050636","url":null,"abstract":"<p><strong>Introduction: </strong>During mesenchymal stem cell (MSCs) aging, a decrease in its proliferation and regenerative capacity occurs, which is implicated in human aging. The MSCs aging process is regulated by genetics, metabolism, the external environment, and various complex pathways.</p><p><strong>Method: </strong>The aging of MSCs during in vitro culture poses a major challenge for developing cell therapy aimed at combating human diseases and aging. To identify the contributing factors underlying MSCs aging, we obtained datasets of mRNA expression changes before and after aging from the Gene Expression Omnibus (GEO) database and datasets of extracellular vesicles (EVs) microRNAs (miRNAs) expression changes (GSE153752, GSE195634, and GSE226464). We conducted an indepth analysis to screen the correlation between EVs-miRNAs and MSCs aging.</p><p><strong>Result: </strong>Our analysis identified significant differences in the expression of hsa-miR-146a-5p, hsamiR- 432-5p, hsa-miR-7706, hsa-miR-409-3p, and hsa-miR-17-5p in EVs before and after MSCs aging. These differences arise from the post-MSCs aging activation of signaling pathways, such as FOXO and P53, which promote the expression of hsa-miR-146a-5p, hsa-miR-432-5p, hsa-miR-7706, hsa-miR-409-3p, and hsa-miR-17-5p.</p><p><strong>Conclusion: </strong>Subsequently, these miRNAs are transported to EVs upon binding to the RNA-binding proteins A2BP1, SFRS2, MBNL1, EIF4B, and ACO1. This study used the correlation between MSCs aging and specific EVs-miRNAs to predict MSCs aging during the culture process.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142820438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mesenchymal Stem Cells: An Effective Therapy Regime for Oral Cancer.","authors":"Thangavel Lakshmipriya, Subash C B Gopinath","doi":"10.2174/011574888X358204241208161841","DOIUrl":"https://doi.org/10.2174/011574888X358204241208161841","url":null,"abstract":"","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142820436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}