Current stem cell research & therapy最新文献

筛选
英文 中文
Single-cell Technology in Stem Cell Research. 干细胞研究中的单细胞技术。
Current stem cell research & therapy Pub Date : 2024-01-18 DOI: 10.2174/011574888X265479231127065541
Ali Golchin, Forough Shams, Faezeh Moradi, Amin Ebrahimi Sadrabadi, Shima Parviz, Shahriar Alipour, Parviz Ranjbarvan, Yaser Hemmati, Maryam Rahnama, Yousef Rasmi, Shiva Gholizadeh-Ghaleh Aziz
{"title":"Single-cell Technology in Stem Cell Research.","authors":"Ali Golchin, Forough Shams, Faezeh Moradi, Amin Ebrahimi Sadrabadi, Shima Parviz, Shahriar Alipour, Parviz Ranjbarvan, Yaser Hemmati, Maryam Rahnama, Yousef Rasmi, Shiva Gholizadeh-Ghaleh Aziz","doi":"10.2174/011574888X265479231127065541","DOIUrl":"https://doi.org/10.2174/011574888X265479231127065541","url":null,"abstract":"<p><p>Single-cell technology (SCT), which enables the examination of the fundamental units comprising biological organs, tissues, and cells, has emerged as a powerful tool, particularly in the field of biology, with a profound impact on stem cell research. This innovative technology opens new pathways for acquiring cell-specific data and gaining insights into the molecular pathways governing organ function and biology. SCT is not only frequently used to explore rare and diverse cell types, including stem cells, but it also unveils the intricacies of cellular diversity and dynamics. This perspective, crucial for advancing stem cell research, facilitates non-invasive analyses of molecular dynamics and cellular functions over time. Despite numerous investigations into potential stem cell therapies for genetic disorders, degenerative conditions, and severe injuries, the number of approved stem cell-based treatments remains limited. This limitation is attributed to the various heterogeneities present among stem cell sources, hindering their widespread clinical utilization. Furthermore, stem cell research is intimately connected with cutting-edge technologies, such as microfluidic organoids, CRISPR technology, and cell/tissue engineering. Each strategy developed to overcome the constraints of stem cell research has the potential to significantly impact advanced stem cell therapies. Drawing from the advantages and progress achieved through SCT-based approaches, this study aims to provide an overview of the advancements and concepts associated with the utilization of SCT in stem cell research and its related fields.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139513924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human Umbilical Cord Mesenchymal Stem Cells Alleviate Chronic Salpingitis by Modulating Macrophage-Associated Inflammatory Factors. 人脐带间充质干细胞通过调节巨噬细胞相关炎症因子缓解慢性输卵管炎
Current stem cell research & therapy Pub Date : 2024-01-01 DOI: 10.2174/011574888X261128231108043931
Wenjuan Liao, Xiaomao Li, Xinrang Tang
{"title":"Human Umbilical Cord Mesenchymal Stem Cells Alleviate Chronic Salpingitis by Modulating Macrophage-Associated Inflammatory Factors.","authors":"Wenjuan Liao, Xiaomao Li, Xinrang Tang","doi":"10.2174/011574888X261128231108043931","DOIUrl":"10.2174/011574888X261128231108043931","url":null,"abstract":"<p><strong>Introduction: </strong>Mesenchymal stem cells (MSCs) have been widely studied because of their established anti-inflammatory properties. During chronic salpingitis (CS), infiltrated macrophages have vital roles in inflammation and tissue remodeling.</p><p><strong>Methods: </strong>We employed the type of MSCs, human umbilical cord (huc) MSCs in an experimental CS model and therapeutic efficacy was assessed. hucMSCs exerted this therapeutic effect by regulating macrophage function. To verify the regulatory effects of hucMSCs on the macrophage, macrophage line RAW264.7 markers were analyzed under LPS stimulation with or without co-culturing with hucMSCs for 12h and 24h. In addition, flow cytometry analysis was applied to reveal the interaction of co-culture. For animal studies, CS was induced by the MoPn strain Chlamydia trachomatis (CT), hucMSCs were intravaginally injected in the CS, and we analyzed the infiltrated macrophage by immunofluorescence.</p><p><strong>Results: </strong>We found the markers IL-10 was markedly increased and IL-1β, caspase-1 was notably downregulated after co-culturing with hucMSCs by RT-PCR. hucMSCs promote macrophage line RAW264.7 apoptosis. We also found that hucMSCs treatment can alleviate CS by decreasing the mRNA expression of IL-1β, caspase-1 and MCP-1 in the tubal tissue by RT-PCR and decreasing the protein expression of IL-1β, caspase-1 and TGF-β by western blotting.</p><p><strong>Conclusion: </strong>These results suggest that macrophage function may be related to the immune-modulating characteristics of hucMSCs that contribute to CS.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139089716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The miR-210 Primed Endothelial Progenitor Cell Exosomes Alleviate Acute Ischemic Brain Injury. miR-210引发的内皮祖细胞外泌体减轻急性缺血性脑损伤。
Current stem cell research & therapy Pub Date : 2024-01-01 DOI: 10.2174/011574888X266357230923113642
Jinju Wang, Shuzhen Chen, Harshal Sawant, Yanfang Chen, Ji Chen Bihl
{"title":"The miR-210 Primed Endothelial Progenitor Cell Exosomes Alleviate Acute Ischemic Brain Injury.","authors":"Jinju Wang, Shuzhen Chen, Harshal Sawant, Yanfang Chen, Ji Chen Bihl","doi":"10.2174/011574888X266357230923113642","DOIUrl":"10.2174/011574888X266357230923113642","url":null,"abstract":"<p><strong>Background: </strong>Stem cell-released exosomes (EXs) have shown beneficial effects on regenerative diseases. Our previous study has revealed that EXs of endothelial progenitor cells (EPC-EXs) can elicit favorable effects on endothelial function. EXs may vary greatly in size, composition, and cargo uptake rate depending on the origins and stimulus; notably, EXs are promising vehicles for delivering microRNAs (miRs). Since miR-210 is known to protect cerebral endothelial cell mitochondria by reducing oxidative stress, here we study the effects of miR-210-loaded EPC-EXs (miR210-EPC-EXs) on ischemic brain damage in acute ischemic stroke (IS).</p><p><strong>Methods: </strong>The miR210-EPC-EXs were generated from EPCs transfected with miR-210 mimic. Middle cerebral artery occlusion (MCAO) surgery was performed to induce acute IS in C57BL/6 mice. EPC-EXs or miR210-EPC-EXs were administrated via tail vein injection 2 hrs after IS. To explore the potential mechanisms, inhibitors of the vascular endothelial growth factor receptor 2 (VEGFR2)/PI3 kinase (PI3K) or tyrosine receptor kinase B (TrkB)/PI3k pathways were used. The brain tissue was collected after treatments for infarct size, cell apoptosis, oxidative stress, and protein expression (VEGFR2, TrkB) analyses on day two. The neurological deficit score (NDS) was evaluated before collecting the samples.</p><p><strong>Results: </strong>1) As compared to EPC-EXs, miR210-EPC-EXs profoundly reduced the infarct volume and improved the NDS on day two post-IS. 2) Fewer apoptosis cells were detected in the peri-infarct brain of mice treated with miR210-EPC-EXs than in EPC-EXs-treated mice. Meanwhile, the oxidative stress was profoundly reduced by miR210-EPC-EXs. 3) The ratios of p-PI3k/PI3k, p- VEGFR2/VEGFR2, and p-TrkB/TrkB in the ipsilateral brain were raised by miR210-EPC-EXs treatment. These effects could be significantly blocked or partially inhibited by PI3k, VEGFR2, or TrkB pathway inhibitors.</p><p><strong>Conclusion: </strong>These findings suggest that miR210-EPC-EXs protect the brain from acute ischemia- induced cell apoptosis and oxidative stress partially through the VEGFR2/PI3k and TrkB/PI3k signal pathways.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11082070/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92158084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Different Sources of Bone Marrow Mesenchymal Stem Cells: A Comparison of Subchondral, Mandibular, and Tibia Bone-derived Mesenchymal Stem Cells. 骨髓间充质干细胞的不同来源:软骨下、下颌骨和胫骨来源的间充质细胞的比较。
Current stem cell research & therapy Pub Date : 2024-01-01 DOI: 10.2174/011574888X260686231023091127
Yu Wang, Hong-Yu Li, Shu-Yuan Guan, Si-Han Yu, Ya-Chuan Zhou, Li-Wei Zheng, Jun Zhang
{"title":"Different Sources of Bone Marrow Mesenchymal Stem Cells: A Comparison of Subchondral, Mandibular, and Tibia Bone-derived Mesenchymal Stem Cells.","authors":"Yu Wang, Hong-Yu Li, Shu-Yuan Guan, Si-Han Yu, Ya-Chuan Zhou, Li-Wei Zheng, Jun Zhang","doi":"10.2174/011574888X260686231023091127","DOIUrl":"10.2174/011574888X260686231023091127","url":null,"abstract":"<p><strong>Background: </strong>Stem cell properties vary considerably based on the source and tissue site of mesenchymal stem cells (MSCs). The mandibular condyle is a unique kind of craniofacial bone with a special structure and a relatively high remodeling rate. MSCs here may also be unique to address specific physical needs.</p><p><strong>Objective: </strong>The aim of this study was to compare the proliferation and multidirectional differentiation potential among MSCs derived from the tibia (TMSCs), mandibular ramus marrow (MMSCs), and condylar subchondral bone (SMSCs) of rats <i>in vitro</i>.</p><p><strong>Methods: </strong>Cell proliferation and migration were assessed by CCK-8, laser confocal, and cell scratch assays. Histochemical staining and real-time PCR were used to evaluate the multidirectional differentiation potential and DNA methylation and histone deacetylation levels.</p><p><strong>Results: </strong>The proliferation rate and self-renewal capacity of SMSCs were significantly higher than those of MMSCs and TMSCs. Moreover, SMSCs possessed significantly higher mineralization and osteogenic differentiation potential. <i>Dnmt2, Dnmt3b, Hdac6, Hdac7, Hdac9,</i> and <i>Hdac10</i> may be instrumental in the osteogenesis of SMSCs. In addition, SMSCs are distinct from MMSCs and TMSCs with lower adipogenic differentiation and chondrogenic differentiation potential. The multidirectional differentiation capacities of TMSCs were exactly the opposite of those of SMSCs, and the results of MMSCs were intermediate.</p><p><strong>Conclusion: </strong>This research offers a new paradigm in which SMSCs could be a useful source of stem cells for further application in stem cell-based medical therapies due to their strong cell renewal and osteogenic capacity.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71490344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transient Fever: The Sole Treatment-Related Adverse Event Associated with Mesenchymal Stromal Cells and Solid Clues from the Real World. 短暂性发热:与来自真实世界的间充质基质细胞和固体线索相关的唯一治疗相关不良事件。
Current stem cell research & therapy Pub Date : 2024-01-01 DOI: 10.2174/011574888X179799231023060734
Yang Wang, Qiuying Mou, Hanxiao Yi, Zilu Meng
{"title":"Transient Fever: The Sole Treatment-Related Adverse Event Associated with Mesenchymal Stromal Cells and Solid Clues from the Real World.","authors":"Yang Wang, Qiuying Mou, Hanxiao Yi, Zilu Meng","doi":"10.2174/011574888X179799231023060734","DOIUrl":"10.2174/011574888X179799231023060734","url":null,"abstract":"<p><strong>Background: </strong>The number of trials investigating mesenchymal stromal cells (MSCs) soars within 3 years which urges a study analysing emerging MSC treatment-related adverse events.</p><p><strong>Aim: </strong>To assess the safety of MSC therapy and provide solid evidence for clinical translation of MSC.</p><p><strong>Methods: </strong>A meta-analysis of randomized clinical trials (RCTs) published up to April 20th, 2023 was performed. Odds ratio (OR) and 95% confidential intervals (CIs) were used to display pooled results.</p><p><strong>Results: </strong>152 randomized clinical trials (RCTs) that incorporated 9228 individuals treated with MSCs from autologous or allogenic adipose tissue, bone marrow, Wharton's Jelly, and placenta tissue were included in the analysis. We discovered appropriate 21 MSC treatment-related adverse events (TRAEs), of which fever [OR, 1.61, 95% CI: 1.22-2.11, p<0.01] was the sole event that was closely associated with MSC therapy. MSCs also trended to lower the incidence rate of tachycardia [OR, 0.83, 95% CI: 0.64-1.09, p=0.14] and fatigue [OR, 0.18, 95% CI: 0.61-1.07, p=0.18]. A separate analysis of studies with long-term follow-up (more than 1 year) demonstrated the close relationship between MSCs and fever [OR, 1.75, 95% CI: 1.26-2.24, p<0.01]. The rest TRAEs did not associate themselves with MSC therapy. Dose-response was also conducted for fever, linearity was discovered between MSCs from allogeneic tissue and Wharton's Jelly and fever.</p><p><strong>Conclusion: </strong>To date, our results suggest that fever is the only AE closely associated with MSCs.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71430370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generating Retinas through Guided Pluripotent Stem Cell Differentiation and Direct Somatic Cell Reprogramming. 通过引导多能干细胞分化和直接体细胞重新编程产生视网膜。
Current stem cell research & therapy Pub Date : 2024-01-01 DOI: 10.2174/011574888X255496230923164547
Ke Zhang, Wenwen Cai, Leyi Hu, Shuyi Chen
{"title":"Generating Retinas through Guided Pluripotent Stem Cell Differentiation and Direct Somatic Cell Reprogramming.","authors":"Ke Zhang, Wenwen Cai, Leyi Hu, Shuyi Chen","doi":"10.2174/011574888X255496230923164547","DOIUrl":"10.2174/011574888X255496230923164547","url":null,"abstract":"<p><p>Retinal degeneration diseases affect millions of people worldwide but are among the most difficult eye diseases to cure. Studying the mechanisms and developing new therapies for these blinding diseases requires researchers to have access to many retinal cells. In recent years there has been substantial advances in the field of biotechnology in generating retinal cells and even tissues <i>in vitro</i>, either through programmed sequential stem cell differentiation or direct somatic cell lineage reprogramming. The resemblance of these <i>in vitro</i>-generated retinal cells to native cells has been increasingly utilized by researchers. With the help of these <i>in vitro</i> retinal models, we now have a better understanding of human retinas and retinal diseases. Furthermore, these <i>in vitro</i>-generated retinal cells can be used as donor cells which solves a major hurdle in the development of cell replacement therapy for retinal degeneration diseases, while providing a promising option for patients suffering from these diseases. In this review, we summarize the development of pluripotent stem cell-to-retinal cell differentiation methods, the recent advances in generating retinal cells through direct somatic cell reprogramming, and the translational applications of retinal cells generated <i>in vitro</i>. Finally, we discuss the limitations of the current protocols and possible future directions for improvement.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41166101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tumor Organoid as a Drug Screening Platform for Cancer Research. 肿瘤类器官作为癌症研究的药物筛选平台。
Current stem cell research & therapy Pub Date : 2024-01-01 DOI: 10.2174/011574888X268366230922080423
Reyhaneh Mahbubi Arani, Niloufar Yousefi, Amir Ali Hamidieh, Fatemeh Gholizadeh, Mahsa Mollapour Sisakht
{"title":"Tumor Organoid as a Drug Screening Platform for Cancer Research.","authors":"Reyhaneh Mahbubi Arani, Niloufar Yousefi, Amir Ali Hamidieh, Fatemeh Gholizadeh, Mahsa Mollapour Sisakht","doi":"10.2174/011574888X268366230922080423","DOIUrl":"10.2174/011574888X268366230922080423","url":null,"abstract":"<p><p>A number of studies have been conducted on the application of 3D models for drug discovery, drug sensitivity assessment, and drug toxicity. Most of these studies focused on disease modelling and attempted to control cellular differentiation, heterogeneity, and key physiological features to mimic organ reconstitution so that researchers could achieve an accurate response in drug evaluation. Recently, organoids have been used by various scientists due to their highly organotypic structure, which facilitates the translation from basic research to the clinic, especially in cancer research. With this tool, researchers can perform high-throughput analyses of compounds and determine the exact effect on patients based on their genetic variations, as well as develop personalized and combination therapies. Although there is a lack of standardization in organoid culture, patientderived organoids (PDOs) have become widely established and used for drug testing. In this review, we have discussed recent advances in the application of organoids and tumoroids not only in cancer research for drug screening but also in clinical trials to demonstrate the potential of organoids in translational medicine.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49686448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing the Regenerative Potential of Adipose-Derived Mesenchymal Stem Cells Through TLR4-Mediated Signaling. 通过 TLR4 介导的信号增强脂肪间充质干细胞的再生潜能
Current stem cell research & therapy Pub Date : 2024-01-01 DOI: 10.2174/011574888X283664231219080535
Demet Kaçaroğlu, Seher Yaylacı
{"title":"Enhancing the Regenerative Potential of Adipose-Derived Mesenchymal Stem Cells Through TLR4-Mediated Signaling.","authors":"Demet Kaçaroğlu, Seher Yaylacı","doi":"10.2174/011574888X283664231219080535","DOIUrl":"10.2174/011574888X283664231219080535","url":null,"abstract":"<p><strong>Introduction: </strong>Toll-like receptor 4 (TLR4) is a receptor that traditionally plays an important role in immunomodulation (regulation of the immune system) and the initiation of proinflammatory responses. TLR4 is used in the body to recognize molecular patterns of pathogens or damaged cells from outside. However, in recent years, it has also become clear that TLR4 can affect the immune system and the function of stem cells, especially mesenchymal stem cells. Therefore, understanding how TLR4 signaling works at the cellular and molecular level and using this knowledge in regenerative medicine could be potentially useful, especially in the treatment of adipose- derived mesenchymal stem cells (ADMSCs). How these cells can use TLR4 signaling when used to increase their regenerative potential and repair tissues is an area of research.</p><p><strong>Aims: </strong>This study aims to elucidate the multifaceted role of TLR4-mediated signaling in ADMSCs.</p><p><strong>Methods: </strong>Employing a comprehensive set of assays, including MTT for cell viability, flow cytometry for surface marker expression, and gene expression analysis, we demonstrate that TLR4 activation significantly modulates key aspects of ADMSC biology. Specifically, TLR4 signaling was found to regulate ADMSCs proliferation, surface marker expression, and regenerative capacity in a dose- and time-dependent manner. Furthermore, TLR4 activation conferred cytoprotective effects against Doxorubicin (DOX)-induced cellular apoptosis.</p><p><strong>Results: </strong>These findings suggest that TLR4 signaling could be used to enhance the regenerative abilities of ADMSCs and enable ADMSC-based therapies to be used more effectively for tissue engineering and therapeutic purposes.</p><p><strong>Conclusion: </strong>However, it is important to note that research in this area needs more details and clinical studies.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139418834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of Pancreatic β-cell Differentiation Efficiency of Human iPSC Lines for Clinical Use 评估用于临床的人类 iPSC 株系的胰腺 β 细胞分化效率
Current stem cell research & therapy Pub Date : 2024-01-01 DOI: 10.2174/011574888X267226231126185532
Ayumi Horikawa, Kyoko Tsuda, Takayoshi Yamamoto, Tatsuo Michiue
{"title":"Evaluation of Pancreatic β-cell Differentiation Efficiency of Human iPSC Lines for Clinical Use","authors":"Ayumi Horikawa, Kyoko Tsuda, Takayoshi Yamamoto, Tatsuo Michiue","doi":"10.2174/011574888X267226231126185532","DOIUrl":"10.2174/011574888X267226231126185532","url":null,"abstract":"<p><strong>Background: </strong>Transplantation of pancreatic β-cells generated from human induced pluripotent stem cells (hiPSCs) has great potential as a root treatment for type 1 diabetes. However, their current level of efficiency to differentiate into β-cells is still not at par for clinical use. Previous research has shown that differentiation efficiency varies among human embryonic stem cells and mouse-induced pluripotent stem cell lines. Therefore, selecting a suitable cell line for efficient induction into desired tissues and organs is crucial.</p><p><strong>Methods: </strong>In this study, we have evaluated the efficiency of 15 hiPSC lines available for clinical use to differentiate into pancreatic β-cells.</p><p><strong>Results: </strong>Our investigation has revealed induction efficiency to differ among the hiPSC lines, even when derived from the same donor. Among the hiPSC lines tested, the 16A01 cell line exhibited the highest <i>Insulin</i> expression and low <i>Glucagon</i> expression, suggesting that this cell line is suitable for differentiation into β-cells.</p><p><strong>Conclusion: </strong>Our study has demonstrated the importance of selecting a suitable hiPSC line for effective differentiation into β-cells.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139682186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progress of Cancer Stem Cells in Retinoblastoma. 癌症干细胞在视网膜母细胞瘤中的研究进展。
Current stem cell research & therapy Pub Date : 2024-01-01 DOI: 10.2174/011574888X252989230921065809
Nan Wang, Jian-Min Ma
{"title":"Progress of Cancer Stem Cells in Retinoblastoma.","authors":"Nan Wang, Jian-Min Ma","doi":"10.2174/011574888X252989230921065809","DOIUrl":"10.2174/011574888X252989230921065809","url":null,"abstract":"<p><p>The theory of cancer stem cells is a breakthrough discovery that offers exciting possibilities for comprehending the biological behavior of tumors. More and more evidence suggests that retinoblastoma cancer stem cells promote tumor growth and are likely to be the origin of tumor formation, drug resistance, recurrence, and metastasis. At present, some progress has been made in the verification, biological behavior, and drug resistance mechanism of retinoblastoma cancer stem cells. This article aims to review the relevant research and explore future development direction.</p>","PeriodicalId":93971,"journal":{"name":"Current stem cell research & therapy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41184576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信