American journal of physiology. Renal physiology最新文献

筛选
英文 中文
Endogenous activation of peroxisome proliferator-activated receptor-α in proximal tubule cells in counteracting phosphate toxicity. 近端肾小管细胞中过氧化物酶体增殖激活受体α在抵消磷酸盐毒性中的内源性激活作用
American journal of physiology. Renal physiology Pub Date : 2024-08-01 Epub Date: 2024-06-13 DOI: 10.1152/ajprenal.00046.2024
Yusuke Katsuma, Isao Matsui, Ayumi Matsumoto, Hiroki Okushima, Atsuhiro Imai, Yusuke Sakaguchi, Takeshi Yamamoto, Masayuki Mizui, Shohei Uchinomiya, Hisakazu Kato, Akio Ojida, Seiji Takashima, Kazunori Inoue, Yoshitaka Isaka
{"title":"Endogenous activation of peroxisome proliferator-activated receptor-α in proximal tubule cells in counteracting phosphate toxicity.","authors":"Yusuke Katsuma, Isao Matsui, Ayumi Matsumoto, Hiroki Okushima, Atsuhiro Imai, Yusuke Sakaguchi, Takeshi Yamamoto, Masayuki Mizui, Shohei Uchinomiya, Hisakazu Kato, Akio Ojida, Seiji Takashima, Kazunori Inoue, Yoshitaka Isaka","doi":"10.1152/ajprenal.00046.2024","DOIUrl":"10.1152/ajprenal.00046.2024","url":null,"abstract":"<p><p>Increased dietary phosphate consumption intensifies renal phosphate burden. Several mechanisms for phosphate-induced renal tubulointerstitial fibrosis have been reported. Considering the dual nature of phosphate as both a potential renal toxin and an essential nutrient for the body, kidneys may possess inherent protective mechanisms against phosphate overload, rather than succumbing solely to injury. However, there is limited understanding of such mechanisms. To identify these mechanisms, we conducted single-cell RNA sequencing (scRNA-seq) analysis of the kidneys of control and dietary phosphate-loaded (Phos) mice at a time point when the Phos group had not yet developed tubulointerstitial fibrosis. scRNA-seq analysis identified the highest number of differentially expressed genes in the clusters belonging to proximal tubular epithelial cells (PTECs). Based on these differentially expressed genes, in silico analyses suggested that the Phos group activated peroxisome proliferator-activated receptor-α (PPAR-α) and fatty acid β-oxidation (FAO) in the PTECs. This activation was further substantiated through various experiments, including the use of an FAO activity visualization probe. Compared with wild-type mice, <i>Ppara</i> knockout mice exhibited exacerbated tubulointerstitial fibrosis in response to phosphate overload. Experiments conducted with cultured PTECs demonstrated that activation of the PPAR-α/FAO pathway leads to improved cellular viability under high-phosphate conditions. The Phos group mice showed a decreased serum concentration of free fatty acids, which are endogenous PPAR-α agonists. Instead, experiments using cultured PTECs revealed that phosphate directly activates the PPAR-α/FAO pathway. These findings indicate that noncanonical metabolic reprogramming via endogenous activation of the PPAR-α/FAO pathway in PTECs is essential to counteract phosphate toxicity.<b>NEW & NOTEWORTHY</b> This study revealed the activation of peroxisome proliferator-activated receptor-α and fatty acid β-oxidation in proximal tubular epithelial cells as an endogenous mechanism to protect the kidney from phosphate toxicity. These findings highlight noncanonical metabolic reprogramming as a potential target for suppressing phosphate toxicity in the kidneys.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"F208-F223"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141319237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perinatal asphyxia leads to acute kidney damage and increased renal susceptibility in adulthood. 围产期窒息会导致急性肾损伤和成年后肾脏易感性增加。
American journal of physiology. Renal physiology Pub Date : 2024-08-01 Epub Date: 2024-06-27 DOI: 10.1152/ajprenal.00039.2024
Tamas Lakat, Andrea Fekete, Kornel Demeter, Akos R Toth, Zoltan K Varga, Attila Patonai, Hanga Kelemen, Andras Budai, Miklos Szabo, Attila J Szabo, Kai Kaila, Adam Denes, Eva Mikics, Adam Hosszu
{"title":"Perinatal asphyxia leads to acute kidney damage and increased renal susceptibility in adulthood.","authors":"Tamas Lakat, Andrea Fekete, Kornel Demeter, Akos R Toth, Zoltan K Varga, Attila Patonai, Hanga Kelemen, Andras Budai, Miklos Szabo, Attila J Szabo, Kai Kaila, Adam Denes, Eva Mikics, Adam Hosszu","doi":"10.1152/ajprenal.00039.2024","DOIUrl":"10.1152/ajprenal.00039.2024","url":null,"abstract":"<p><p>Perinatal asphyxia (PA) poses a significant threat to multiple organs, particularly the kidneys. Diagnosing PA-associated kidney injury remains challenging, and treatment options are inadequate. Furthermore, there is a lack of long-term follow-up data regarding the renal implications of PA. In this study, 7-day-old male Wistar rats were exposed to PA using a gas mixture (4% O<sub>2</sub>; 20% CO<sub>2</sub> in N<sub>2</sub> for 15 min) to investigate molecular pathways linked to renal tubular damage, hypoxia, angiogenesis, heat shock response, inflammation, and fibrosis in the kidney. In a second experiment, adult rats with a history of PA were subjected to moderate renal ischemia-reperfusion (IR) injury to test the hypothesis that PA exacerbates renal susceptibility. Our results revealed an increased gene expression of renal injury markers (kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin), hypoxic and heat shock factors (hypoxia-inducible factor-1α, heat shock factor-1, and heat shock protein-27), proinflammatory cytokines (interleukin-1β, interleukin-6, tumor necrosis factor-α, and monocyte chemoattractant protein-1), and fibrotic markers (transforming growth factor-β, connective tissue growth factor, and fibronectin) promptly after PA. Moreover, a machine learning model was identified through random forest analysis, demonstrating an impressive classification accuracy (95.5%) for PA. Post-PA rats showed exacerbated functional decline and tubular injury and more intense hypoxic, heat shock, proinflammatory, and profibrotic response after renal IR injury compared with controls. In conclusion, PA leads to subclinical kidney injury, which may increase the susceptibility to subsequent renal damage later in life. In addition, the parameters identified through random forest analysis provide a robust foundation for future biomarker research in the context of PA.<b>NEW & NOTEWORTHY</b> This article demonstrates that perinatal asphyxia leads to subclinical kidney injury that permanently increases renal susceptibility to subsequent ischemic injury. We identified major molecular pathways involved in perinatal asphyxia-induced renal complications, highlighting potential targets of therapeutic approaches. In addition, random forest analysis revealed a model that classifies perinatal asphyxia with 95.5% accuracy that may provide a strong foundation for further biomarker research. These findings underscore the importance of multiorgan follow-up for perinatal asphyxia-affected patients.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"F314-F326"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141461275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-voltage-gated Ca2+ channel signaling in glomerular cells in kidney health and disease. 肾脏健康和疾病中肾小球细胞的非电压门控 Ca2+ 通道信号传导。
American journal of physiology. Renal physiology Pub Date : 2024-08-01 Epub Date: 2024-06-13 DOI: 10.1152/ajprenal.00130.2024
Rong Ma, Yu Tao, Michael L Wade, Robert T Mallet
{"title":"Non-voltage-gated Ca<sup>2+</sup> channel signaling in glomerular cells in kidney health and disease.","authors":"Rong Ma, Yu Tao, Michael L Wade, Robert T Mallet","doi":"10.1152/ajprenal.00130.2024","DOIUrl":"10.1152/ajprenal.00130.2024","url":null,"abstract":"<p><p>Positioned at the head of the nephron, the renal corpuscle generates a plasma ultrafiltrate to initiate urine formation. Three major cell types within the renal corpuscle, the glomerular mesangial cells, podocytes, and glomerular capillary endothelial cells, communicate via endocrine- and paracrine-signaling mechanisms to maintain the structure and function of the glomerular capillary network and filtration barrier. Ca<sup>2+</sup> signaling mediated by several distinct plasma membrane Ca<sup>2+</sup> channels impacts the functions of all three cell types. The past two decades have witnessed pivotal advances in understanding of non-voltage-gated Ca<sup>2+</sup> channel function and regulation in the renal corpuscle in health and renal disease. This review summarizes the current knowledge of the physiological and pathological impact of non-voltage-gated Ca<sup>2+</sup> channel signaling in mesangial cells, podocytes and glomerular capillary endothelium. The main focus is on transient receptor potential and store-operated Ca<sup>2+</sup> channels, but ionotropic <i>N</i>-methyl-d-aspartate receptors and purinergic receptors also are discussed. This update of Ca<sup>2+</sup> channel functions and their cellular signaling cascades in the renal corpuscle is intended to inform the development of therapeutic strategies targeting these channels to treat kidney diseases, particularly diabetic nephropathy.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"F249-F264"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460346/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141312473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sex-disaggregated analysis of acute kidney injury in hospitalized children with sickle cell anemia in Uganda. 乌干达镰状细胞贫血症住院患儿急性肾损伤的性别分类分析。
American journal of physiology. Renal physiology Pub Date : 2024-08-01 Epub Date: 2024-06-27 DOI: 10.1152/ajprenal.00385.2023
Andrea Weckman, Chloe R McDonald, Shubaya K Naggayi, Danielle E Soranno, Andrea L Conroy, Anthony Batte
{"title":"Sex-disaggregated analysis of acute kidney injury in hospitalized children with sickle cell anemia in Uganda.","authors":"Andrea Weckman, Chloe R McDonald, Shubaya K Naggayi, Danielle E Soranno, Andrea L Conroy, Anthony Batte","doi":"10.1152/ajprenal.00385.2023","DOIUrl":"10.1152/ajprenal.00385.2023","url":null,"abstract":"<p><p>A growing body of research is categorizing sex differences in both sickle cell anemia (SCA) and acute kidney injury (AKI); however, most of this work is being conducted in high-resource settings. Here, we evaluated risk factors and clinical parameters associated with AKI and AKI severity, stratified by sex, in a cohort of children hospitalized with SCA and vaso-occlusive pain crisis (VOC). The purpose of this study was to explore sex disparities in a high-risk, vulnerable population. This study was a secondary analysis of data collected from a cohort of Ugandan children between 2 and 18 yr of age prospectively enrolled. A total of 185 children were enrolled in the primary study; 41.6% were female and 58.4% were male, with a median age of 8.9 yr. Incident or worsening AKI (<i>P</i> = 0.026) occurred more frequently in female compared with male children, despite no differences in AKI on admission. Female children also had altered markers of renal function including higher creatinine levels at admission (<i>P</i> = 0.03), higher peak creatinine (<i>P</i> = 0.006), and higher urine neutrophil gelatinase-associated lipocalin (NGAL) at admission (<i>P</i> = 0.003) compared with male children. Female children had elevated total (<i>P</i> = 0.045) and conjugated bilirubin at admission (<i>P</i> = 0.02) compared with male children and higher rates of hematuria at admission (<i>P</i> = 0.004). Here, we report sex differences in AKI in children with SCA and VOC, including increased incidence and worsening of AKI in female pediatric patients, in association with an increase in biological indicators of poor renal function including creatinine, estimated glomerular filtration rate, and NGAL.<b>NEW & NOTEWORTHY</b> In this study, we report an increased risk of developing acute kidney injury (AKI) during hospitalization, worsening AKI, and death among females with sickle cell anemia (SCA) hospitalized with an acute pain crisis compared with males. The sex differences in AKI were not explained by socioeconomic differences, severity of pain, or disease severity among females compared with males. Together, these data suggest that female children with SCA may be at increased risk of AKI.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"F304-F313"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460334/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141461276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Control of ENaC ubiquitination. 控制 ENaC 泛素化。
American journal of physiology. Renal physiology Pub Date : 2024-08-01 Epub Date: 2024-06-13 DOI: 10.1152/ajprenal.00037.2024
Shujie Shi, Gustavo Frindt, Sarah Christine M Whelan, Lawrence G Palmer
{"title":"Control of ENaC ubiquitination.","authors":"Shujie Shi, Gustavo Frindt, Sarah Christine M Whelan, Lawrence G Palmer","doi":"10.1152/ajprenal.00037.2024","DOIUrl":"10.1152/ajprenal.00037.2024","url":null,"abstract":"<p><p>Ubiquitination influences the expression of the epithelial Na<sup>+</sup> channel (ENaC). We assessed the mechanisms of selective ubiquitination of the mature, cleaved form of γENaC in both native rodent kidneys and Fisher rat thyroid (FRT) cells expressing the channel heterologously. In both models, singly cleaved and fully cleaved γENaCs were strongly ubiquitinated, implying that the second cleavage releasing an inhibitory peptide was not essential for the process. To see whether location of the protein in or near the apical membrane rather than cleavage per se influences ubiquitination, we studied mutants of γENaC in which cleavage sites are abolished. These subunits were ubiquitinated only when coexpressed with α- and βENaC, facilitating trafficking through the Golgi apparatus. To test whether reaching the apical surface is necessary we performed in situ surface biotinylation and measured ENaC ubiquitination in the apical membrane of rat kidney. Ubiquitination of cleaved γENaC was similar in whole kidney and surface fractions, implying that both apical and subapical channels could be modified. In FRT cells, inhibiting clathrin-mediated endocytosis with Dyngo-4a increased both total and ubiquitinated γENaC at the cell surface. Finally, we tested the idea that increased intracellular Na<sup>+</sup> could stimulate ubiquitination. Administration of amiloride to block Na<sup>+</sup> entry through the channels did not affect ubiquitination of γENaC in either FRT cells or the rat kidney. However, presumed large increases in cellular Na<sup>+</sup> produced by monensin in FRT cells or acute Na<sup>+</sup> repletion in rats increased ubiquitination and decreased overall ENaC expression.<b>NEW & NOTEWORTHY</b> We have explored the mechanisms underlying the ubiquitination of the γ subunit of epithelial Na<sup>+</sup> channel (ENaC), a process believed to control channel internalization and degradation. We previously reported that the mature, cleaved form of the subunit is selectively ubiquitinated. Here we show that this specificity arises not from the cleavage state of the protein but from its location in the cell. We also show that under some conditions, increased intracellular Na<sup>+</sup> can stimulate ENaC ubiquitination.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"F265-F276"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444504/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141312469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diffusion tensor MRI is sensitive to fibrotic injury in a mouse model of oxalate-induced chronic kidney disease. 弥散张量核磁共振成像对草酸盐诱导的慢性肾病小鼠模型中的纤维损伤很敏感。
American journal of physiology. Renal physiology Pub Date : 2024-08-01 Epub Date: 2024-06-13 DOI: 10.1152/ajprenal.00099.2024
Rohan S Virgincar, Aaron K Wong, Kai H Barck, Joshua D Webster, Jeffrey Hung, Patrick Caplazi, Man Kin Choy, William F Forrest, Laura C Bell, Alex J de Crespigny, Debra Dunlap, Charles Jones, Dong Eun Kim, Robby M Weimer, Andrey S Shaw, Hans D Brightbill, Luke Xie
{"title":"Diffusion tensor MRI is sensitive to fibrotic injury in a mouse model of oxalate-induced chronic kidney disease.","authors":"Rohan S Virgincar, Aaron K Wong, Kai H Barck, Joshua D Webster, Jeffrey Hung, Patrick Caplazi, Man Kin Choy, William F Forrest, Laura C Bell, Alex J de Crespigny, Debra Dunlap, Charles Jones, Dong Eun Kim, Robby M Weimer, Andrey S Shaw, Hans D Brightbill, Luke Xie","doi":"10.1152/ajprenal.00099.2024","DOIUrl":"10.1152/ajprenal.00099.2024","url":null,"abstract":"<p><p>Chronic kidney disease (CKD) is characterized by inflammation and fibrosis in the kidney. Renal biopsies and estimated glomerular filtration rate (eGFR) remain the standard of care, but these endpoints have limitations in detecting the stage, progression, and spatial distribution of fibrotic pathology in the kidney. MRI diffusion tensor imaging (DTI) has emerged as a promising noninvasive technology to evaluate renal fibrosis in vivo both in clinical and preclinical studies. However, these imaging studies have not systematically identified fibrosis particularly deeper in the kidney where biopsy sampling is limited, or completed an extensive analysis of whole organ histology, blood biomarkers, and gene expression to evaluate the relative strengths and weaknesses of MRI for evaluating renal fibrosis. In this study, we performed DTI in the sodium oxalate mouse model of CKD. The DTI parameters fractional anisotropy, apparent diffusion coefficient, and axial diffusivity were compared between the control and oxalate groups with region of interest (ROI) analysis to determine changes in the cortex and medulla. In addition, voxel-based analysis (VBA) was implemented to systematically identify local regions of injury over the whole kidney. DTI parameters were found to be significantly different in the medulla by both ROI analysis and VBA, which also spatially matched with collagen III immunohistochemistry (IHC). The DTI parameters in this medullary region exhibited moderate to strong correlations with histology, blood biomarkers, hydroxyproline, and gene expression. Our results thus highlight the sensitivity of DTI to the heterogeneity of renal fibrosis and importance of whole kidney noninvasive imaging.<b>NEW & NOTEWORTHY</b> Chronic kidney disease (CKD) can be characterized by inflammation and fibrosis of the kidney. Although standard of care methods have been limited in scope, safety, and spatial distribution, MRI diffusion tensor imaging (DTI) has emerged as a promising noninvasive technology to evaluate renal fibrosis in vivo. In this study, we performed DTI in an oxalate mouse model of CKD to systematically identify local kidney injury. DTI parameters strongly correlated with histology, blood biomarkers, hydroxyproline, and gene expression.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"F235-F244"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141312471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Membranous translocation of murine double minute 2 promotes the increased renal tubular immunogenicity in ischemia-reperfusion-induced acute kidney injury. 在缺血再灌注诱导的急性肾损伤中,小鼠双分 2 的膜转运促进了肾小管免疫原性的增加。
American journal of physiology. Renal physiology Pub Date : 2024-08-01 Epub Date: 2024-06-13 DOI: 10.1152/ajprenal.00200.2023
Jieyu Zeng, Chen Ye, Chun Zhang, Hua Su
{"title":"Membranous translocation of murine double minute 2 promotes the increased renal tubular immunogenicity in ischemia-reperfusion-induced acute kidney injury.","authors":"Jieyu Zeng, Chen Ye, Chun Zhang, Hua Su","doi":"10.1152/ajprenal.00200.2023","DOIUrl":"10.1152/ajprenal.00200.2023","url":null,"abstract":"<p><p>Kidneys from donors with prolonged warm and cold ischemia are prone to posttransplant T cell-mediated rejection (TCMR) due to ischemia-reperfusion injury (IRI). However, the precise mechanisms still remain obscure. Renal tubular epithelial cells (TECs) are the main target during IRI. Meanwhile, we have previously reported that murine double minute 2 (MDM2) actively participates in TEC homeostasis during IRI. In this study, we established a murine model of renal IRI and a cell model of hypoxia-reoxygenation by culturing immortalized rat renal proximal tubule cells (NRK-52E) in a hypoxic environment for different time points followed by 24 h of reoxygenation and incubating NRK-52E cells in a chemical anoxia-recovery environment. We found that during renal IRI MDM2 expression increased on the membrane of TECs and aggregated mainly on the basolateral side. This process was accompanied by a reduction of a transmembrane protein, programmed death ligand 1 (PD-L1), a coinhibitory second signal for T cells in TECs. Using mutant plasmids of MDM2 to anchor MDM2 on the cell membrane or nuclei, we found that the upregulation of membrane MDM2 could promote the ubiquitination of PD-L1 and lead to its ubiquitination-proteasome degradation. Finally, we set up a coculture system of TECs and CD4<sup>+</sup> T cells in vitro; our results revealed that the immunogenicity of TECs was enhanced during IRI. In conclusion, our findings suggest that the increased immunogenicity of TECs during IRI may be related to ubiquitinated degradation of PD-L1 by increased MDM2 on the cell membrane, which consequently results in T-cell activation and TCMR.<b>NEW & NOTEWORTHY</b> Ischemic acute kidney injury (AKI) donors can effectively shorten the waiting time for kidney transplantation but increase immune rejection, especially T cell-mediated rejection (TCMR), the mechanism of which remains to be elucidated. Our study demonstrates that during ischemia-reperfusion injury (IRI), the translocation of tubular murine double minute 2 leads to basolateral programmed death ligand 1 degradation, which ultimately results in the occurrence of TCMR, which may provide a new therapeutic strategy for preventing AKI donor-associated TCMR.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"F290-F303"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141312472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tips on navigating the first year of graduate school for individuals from historically excluded backgrounds. 为来自历史上被排斥背景的个人提供研究生院第一年的学习技巧。
American journal of physiology. Renal physiology Pub Date : 2024-08-01 Epub Date: 2024-07-11 DOI: 10.1152/ajprenal.00077.2024
Dexter L Lee, Clintoria R Williams, Keisa W Mathis, Jan M Williams, Corey Reynolds, Adrienne L King
{"title":"Tips on navigating the first year of graduate school for individuals from historically excluded backgrounds.","authors":"Dexter L Lee, Clintoria R Williams, Keisa W Mathis, Jan M Williams, Corey Reynolds, Adrienne L King","doi":"10.1152/ajprenal.00077.2024","DOIUrl":"10.1152/ajprenal.00077.2024","url":null,"abstract":"","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"F245-F248"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141592393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
First Author Highlights. 第一作者亮点。
American journal of physiology. Renal physiology Pub Date : 2024-08-01 DOI: 10.1152/ajprenal.2024.327.2.AU
{"title":"First Author Highlights.","authors":"","doi":"10.1152/ajprenal.2024.327.2.AU","DOIUrl":"https://doi.org/10.1152/ajprenal.2024.327.2.AU","url":null,"abstract":"","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":"327 2","pages":"i-ii"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141989718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Creatinine clearance is maintained in a range of wet-bulb globe temperatures and work-rest ratios during simulated occupational heat stress. 在模拟职业热应激过程中,肌酐清除率在一定湿球温度和工作-休息比范围内保持不变。
American journal of physiology. Renal physiology Pub Date : 2024-08-01 Epub Date: 2024-06-13 DOI: 10.1152/ajprenal.00089.2024
Hayden W Hess, Tyler B Baker, Macie L Tarr, Roger S Zoh, Blair D Johnson, David Hostler, Zachary J Schlader
{"title":"Creatinine clearance is maintained in a range of wet-bulb globe temperatures and work-rest ratios during simulated occupational heat stress.","authors":"Hayden W Hess, Tyler B Baker, Macie L Tarr, Roger S Zoh, Blair D Johnson, David Hostler, Zachary J Schlader","doi":"10.1152/ajprenal.00089.2024","DOIUrl":"10.1152/ajprenal.00089.2024","url":null,"abstract":"<p><p>We tested the hypothesis that compliance with the National Institute for Occupational Safety and Health (NIOSH) heat stress recommendations will prevent reductions in glomerular filtration rate (GFR) across a range of wet-bulb globe temperatures (WBGTs) and work-rest ratios at a fixed work intensity. We also tested the hypothesis that noncompliance would result in a reduction in GFR compared with a work-rest matched compliant trial. Twelve healthy adults completed five trials (four NIOSH compliant and one noncompliant) that consisted of 4 h of exposure to a range of WBGTs. Subjects walked on a treadmill (heat production: approximately 430 W) and work-rest ratios (work/h: 60, 45, 30, and 15 min) were prescribed as a function of WBGT (24°C, 26.5°C, 28.5°C, 30°C, and 36°C), and subjects drank a sport drink ad libitum. Peak core temperature (T<sub>C</sub>) and percentage change in body weight (%ΔBW) were measured. Creatinine clearance measured pre- and postexposure provided a primary marker of GFR. Peak T<sub>C</sub> did not differ among NIOSH-compliant trials (<i>P</i> = 0.065) but differed between compliant versus noncompliant trials (<i>P</i> < 0.001). %ΔBW did not differ among NIOSH-compliant trials (<i>P</i> = 0.131) or between compliant versus noncompliant trials (<i>P</i> = 0.185). Creatinine clearance did not change or differ among compliant trials (<i>P</i> ≥ 0.079). Creatinine clearance did not change or differ between compliant versus noncompliant trials (<i>P</i> ≥ 0.661). Compliance with the NIOSH recommendations maintained GFR. Surprisingly, despite a greater heat strain in a noncompliant trial, GFR was maintained highlighting the potential relative importance of hydration.<b>NEW & NOTEWORTHY</b> We highlight that glomerular filtration rate (GFR) is maintained during simulated occupational heat stress across a range of total work, work-rest ratios, and wet-bulb globe temperatures with ad libitum consumption of an electrolyte and sugar-containing sports drink. Compared with a work-rest matched compliant trial, noncompliance resulted in augmented heat strain but did not induce a reduction in GFR likely due to an increased relative fluid intake and robust fluid conservatory responses.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"F224-F234"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460332/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141312470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信