Soluble (Pro)Renin Receptor as a Novel Regulator of Renal Medullary Na+ Reabsorption.

Tianxin Yang, Zhong-Xiuzi Gao, Zi-Hui Mao, Peng Wu
{"title":"Soluble (Pro)Renin Receptor as a Novel Regulator of Renal Medullary Na<sup>+</sup> Reabsorption.","authors":"Tianxin Yang, Zhong-Xiuzi Gao, Zi-Hui Mao, Peng Wu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Epithelial sodium channel (ENaC) represents a major route of Na<sup>+</sup> reabsorption in the aldosterone-sensitive distal nephron where the bulk of ENaC activity is considered to occur in the cortical collecting duct (CCD). Relatively, ENaC activity in the medulla, especially the inner medulla, is often neglected. (Pro)renin receptor (PRR), also termed as ATP6AP2, a newly characterized member of the renin-angiotensin system (RAS), has emerged as an important regulator of ENaC in the distal nephron. The ENaC regulatory action of PRR is largely mediated by the 28 kDa soluble PRR (sPRR). Although all three subunits of ENaC are under the control of aldosterone, sPRR only mediates the upregulation of α-ENaC but not the other two subunits. Furthermore, sPRR-dependent regulation of α-ENaC only occur in the renal inner medulla but not the cortex. sPRR also rapidly upregulates ENaC activity via Nox4-derived H<sub>2</sub>O<sub>2</sub>. Overall, sPRR has emerged as an important regulator of renal medullary Na<sup>+</sup> reabsorption in the context of overactivation of the renin-angiotensin-aldosterone system (RAAS).</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"None"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Renal physiology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Epithelial sodium channel (ENaC) represents a major route of Na+ reabsorption in the aldosterone-sensitive distal nephron where the bulk of ENaC activity is considered to occur in the cortical collecting duct (CCD). Relatively, ENaC activity in the medulla, especially the inner medulla, is often neglected. (Pro)renin receptor (PRR), also termed as ATP6AP2, a newly characterized member of the renin-angiotensin system (RAS), has emerged as an important regulator of ENaC in the distal nephron. The ENaC regulatory action of PRR is largely mediated by the 28 kDa soluble PRR (sPRR). Although all three subunits of ENaC are under the control of aldosterone, sPRR only mediates the upregulation of α-ENaC but not the other two subunits. Furthermore, sPRR-dependent regulation of α-ENaC only occur in the renal inner medulla but not the cortex. sPRR also rapidly upregulates ENaC activity via Nox4-derived H2O2. Overall, sPRR has emerged as an important regulator of renal medullary Na+ reabsorption in the context of overactivation of the renin-angiotensin-aldosterone system (RAAS).

可溶性(原)肾素受体是肾髓质 Na+ 重吸收的新型调节剂
上皮钠通道(ENaC)是对醛固酮敏感的远端肾小球重吸收 Na+ 的主要途径,其中大部分 ENaC 活性被认为发生在皮质集合管(CCD)。相对而言,髓质,尤其是内髓质中的ENaC活性往往被忽视。(肾素受体(PRR),又称 ATP6AP2,是肾素-血管紧张素系统(RAS)的一个新特征成员,已成为远端肾小球 ENaC 的一个重要调节因子。PRR 的 ENaC 调节作用主要由 28 kDa 的可溶性 PRR(sPRR)介导。虽然ENaC的三个亚基都受醛固酮控制,但sPRR只介导α-ENaC的上调,而不介导其他两个亚基的上调。此外,sPRR 依赖性调节 α-ENaC 只发生在肾内髓,而不是皮质。总之,在肾素-血管紧张素-醛固酮系统(RAAS)过度激活的情况下,sPRR 已成为肾髓质 Na+ 重吸收的重要调节因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信