甘油-3-磷酸有助于慢性肾脏疾病中FGF23产生的增加。

Petra Simic, Han Xie, Qian Zhang, Wen Zhou, Rohan Cherukuru, Michael A Adams, Mandy E Turner, Eugene P Rhee
{"title":"甘油-3-磷酸有助于慢性肾脏疾病中FGF23产生的增加。","authors":"Petra Simic, Han Xie, Qian Zhang, Wen Zhou, Rohan Cherukuru, Michael A Adams, Mandy E Turner, Eugene P Rhee","doi":"10.1152/ajprenal.00311.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Why fibroblast growth factor 23 (FGF23) levels increase markedly in chronic kidney disease (CKD) is unknown. Recently, we found that phosphate stimulates renal production of glycerol-3-phosphate (G-3-P), which circulates to the bone to trigger FGF23 production. To assess the impact of G-3-P on FGF23 production in CKD, we compared the effect of adenine-induced CKD in mice deficient in glycerol-3-phosphate dehydrogenase 1 (Gpd1), an enzyme that synthesizes G-3-P, along with wild-type littermates. We found that an adenine diet causes a similar degree of renal insufficiency across genotypes and that adenine-induced CKD increases blood G-3-P and FGF23 levels in wild-type mice. Furthermore, we found that the increases in both G-3-P and FGF23 are significantly attenuated, but not fully abrogated, in <i>Gpd1</i><sup>-/-</sup> compared with <i>Gpd1</i><sup>+/+</sup> mice with CKD. There is no difference in blood phosphate or parathyroid hormone between <i>Gpd1</i><sup>-/-</sup> and <i>Gpd1</i><sup>+/+</sup> mice on an adenine diet, but adenine-induced CKD causes greater cortical bone loss in <i>Gpd1</i><sup>-/-</sup> mice. In a separate cohort of rats fed an adenine or control diet, we confirmed that CKD causes an increase in blood G-3-P levels. Importantly, an acute phosphate load increases G-3-P production in both CKD and non-CKD rats, with a significant correlation between measured kidney phosphate uptake and blood G-3-P levels. Together, these findings establish a key role for G-3-P in mineral metabolism in CKD, although more work is required to parse the factors that regulate both Gpd1-dependent and Gpd1-independent G-3-P production in this context.<b>NEW & NOTEWORTHY</b> This study shows that glycerol-3-phosphate, a glycolytic by-product recently implicated in a kidney-to-bone signaling axis that regulates FGF23 production, increases in mice and rats with CKD. Furthermore, mice deficient in a key enzyme that synthesizes glycerol-3-phosphate have attenuated increases in both glycerol-3-phosphate and FGF23 in CKD, along with enhanced cortical bone loss. These studies identify glycerol-3-phosphate as a novel regulator of FGF23 and mineral metabolism in CKD.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"F165-F172"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Glycerol-3-phosphate contributes to the increase in FGF23 production in chronic kidney disease.\",\"authors\":\"Petra Simic, Han Xie, Qian Zhang, Wen Zhou, Rohan Cherukuru, Michael A Adams, Mandy E Turner, Eugene P Rhee\",\"doi\":\"10.1152/ajprenal.00311.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Why fibroblast growth factor 23 (FGF23) levels increase markedly in chronic kidney disease (CKD) is unknown. Recently, we found that phosphate stimulates renal production of glycerol-3-phosphate (G-3-P), which circulates to the bone to trigger FGF23 production. To assess the impact of G-3-P on FGF23 production in CKD, we compared the effect of adenine-induced CKD in mice deficient in glycerol-3-phosphate dehydrogenase 1 (Gpd1), an enzyme that synthesizes G-3-P, along with wild-type littermates. We found that an adenine diet causes a similar degree of renal insufficiency across genotypes and that adenine-induced CKD increases blood G-3-P and FGF23 levels in wild-type mice. Furthermore, we found that the increases in both G-3-P and FGF23 are significantly attenuated, but not fully abrogated, in <i>Gpd1</i><sup>-/-</sup> compared with <i>Gpd1</i><sup>+/+</sup> mice with CKD. There is no difference in blood phosphate or parathyroid hormone between <i>Gpd1</i><sup>-/-</sup> and <i>Gpd1</i><sup>+/+</sup> mice on an adenine diet, but adenine-induced CKD causes greater cortical bone loss in <i>Gpd1</i><sup>-/-</sup> mice. In a separate cohort of rats fed an adenine or control diet, we confirmed that CKD causes an increase in blood G-3-P levels. Importantly, an acute phosphate load increases G-3-P production in both CKD and non-CKD rats, with a significant correlation between measured kidney phosphate uptake and blood G-3-P levels. Together, these findings establish a key role for G-3-P in mineral metabolism in CKD, although more work is required to parse the factors that regulate both Gpd1-dependent and Gpd1-independent G-3-P production in this context.<b>NEW & NOTEWORTHY</b> This study shows that glycerol-3-phosphate, a glycolytic by-product recently implicated in a kidney-to-bone signaling axis that regulates FGF23 production, increases in mice and rats with CKD. Furthermore, mice deficient in a key enzyme that synthesizes glycerol-3-phosphate have attenuated increases in both glycerol-3-phosphate and FGF23 in CKD, along with enhanced cortical bone loss. These studies identify glycerol-3-phosphate as a novel regulator of FGF23 and mineral metabolism in CKD.</p>\",\"PeriodicalId\":93867,\"journal\":{\"name\":\"American journal of physiology. Renal physiology\",\"volume\":\" \",\"pages\":\"F165-F172\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Renal physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1152/ajprenal.00311.2024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Renal physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1152/ajprenal.00311.2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为何成纤维细胞生长因子23 (FGF23)水平在慢性肾脏疾病(CKD)中显著升高尚不清楚。最近,我们发现磷酸盐刺激肾脏生成甘油-3-磷酸(G-3-P),其循环到骨骼触发FGF23的生成。为了评估G-3-P对CKD中FGF23产生的影响,我们比较了腺嘌呤诱导的CKD对缺乏甘油-3-磷酸脱氢酶1(一种合成G-3-P的酶)的小鼠以及野生型幼崽的影响。我们发现腺嘌呤饮食导致不同基因型的肾功能不全程度相似,腺嘌呤诱导的CKD增加了野生型小鼠血液中G-3-P和FGF23的水平。此外,我们发现,与Gpd1+/+小鼠相比,Gpd1-/-小鼠中G-3-P和FGF23的增加明显减弱,但并未完全消除。在腺嘌呤饮食的Gpd1-/-和Gpd1+/+小鼠之间,血磷酸盐和甲状旁腺激素没有差异,但腺嘌呤诱导的CKD在Gpd1-/-小鼠中导致更大的皮质骨丢失。在另一组喂食腺嘌呤或对照饮食的大鼠中,我们证实CKD导致血液G-3-P水平升高。重要的是,急性磷酸盐负荷增加CKD和非CKD大鼠的G-3-P产生,肾脏磷酸盐摄取和血液G-3-P水平之间存在显著相关性。总之,这些发现确定了G-3-P在CKD矿物质代谢中的关键作用,尽管在这种情况下,需要更多的工作来分析调节gpd1依赖性和gpd1非依赖性G-3-P产生的因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Glycerol-3-phosphate contributes to the increase in FGF23 production in chronic kidney disease.

Why fibroblast growth factor 23 (FGF23) levels increase markedly in chronic kidney disease (CKD) is unknown. Recently, we found that phosphate stimulates renal production of glycerol-3-phosphate (G-3-P), which circulates to the bone to trigger FGF23 production. To assess the impact of G-3-P on FGF23 production in CKD, we compared the effect of adenine-induced CKD in mice deficient in glycerol-3-phosphate dehydrogenase 1 (Gpd1), an enzyme that synthesizes G-3-P, along with wild-type littermates. We found that an adenine diet causes a similar degree of renal insufficiency across genotypes and that adenine-induced CKD increases blood G-3-P and FGF23 levels in wild-type mice. Furthermore, we found that the increases in both G-3-P and FGF23 are significantly attenuated, but not fully abrogated, in Gpd1-/- compared with Gpd1+/+ mice with CKD. There is no difference in blood phosphate or parathyroid hormone between Gpd1-/- and Gpd1+/+ mice on an adenine diet, but adenine-induced CKD causes greater cortical bone loss in Gpd1-/- mice. In a separate cohort of rats fed an adenine or control diet, we confirmed that CKD causes an increase in blood G-3-P levels. Importantly, an acute phosphate load increases G-3-P production in both CKD and non-CKD rats, with a significant correlation between measured kidney phosphate uptake and blood G-3-P levels. Together, these findings establish a key role for G-3-P in mineral metabolism in CKD, although more work is required to parse the factors that regulate both Gpd1-dependent and Gpd1-independent G-3-P production in this context.NEW & NOTEWORTHY This study shows that glycerol-3-phosphate, a glycolytic by-product recently implicated in a kidney-to-bone signaling axis that regulates FGF23 production, increases in mice and rats with CKD. Furthermore, mice deficient in a key enzyme that synthesizes glycerol-3-phosphate have attenuated increases in both glycerol-3-phosphate and FGF23 in CKD, along with enhanced cortical bone loss. These studies identify glycerol-3-phosphate as a novel regulator of FGF23 and mineral metabolism in CKD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信