Pax proteins mediate segment-specific functions in proximal tubule survival and response to ischemic injury.

Madison C McElliott, Asha C Telang, Jenna T Ference-Salo, Anas Al-Suraimi, Mahboob Chowdhury, Edgar A Otto, Abdul Soofi, Gregory R Dressler, Jeffrey A Beamish
{"title":"Pax proteins mediate segment-specific functions in proximal tubule survival and response to ischemic injury.","authors":"Madison C McElliott, Asha C Telang, Jenna T Ference-Salo, Anas Al-Suraimi, Mahboob Chowdhury, Edgar A Otto, Abdul Soofi, Gregory R Dressler, Jeffrey A Beamish","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Acute kidney injury (AKI) is a common clinical syndrome with few effective treatments. Though the kidney can regenerate after injury, the molecular mechanisms regulating this process remain poorly understood. Pax2 and Pax8 are DNA-binding transcription factors that are upregulated after kidney injury. However, their function during the response to AKI remains incompletely defined. In this report, we develop a model of ischemic AKI in female mice with mosaic nephrons comprised of both Pax2 and Pax8 mutant and wildtype proximal tubule cells with fixed lineages. Each population therefore experiences identical physiological and injury conditions in the same animal. In these female mice, we show that before injury the S1 and S2 segments of the proximal tubule are depleted of Pax-mutant cells while mutant cells are preserved in the S3 segment. Retained S3 Pax-mutant cells develop a preconditioned phenotype that overlaps with gene expression signatures in AKI. In response to ischemic AKI, which most strongly damages the S3 proximal tubule, injury-resistant mutant S3 cells are more likely to proliferate. Pax-mutant cells then preferentially repopulate the S3 segment of the proximal tubule. Our results indicate that Pax2 and Pax8 are not required for regeneration of the S3 proximal tubule after ischemic AKI. Together, our findings indicate that Pax proteins play a critical role determining the segment-specific proximal tubule gene expression patterns that dictate vulnerability to ischemic injury.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"None"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Renal physiology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Acute kidney injury (AKI) is a common clinical syndrome with few effective treatments. Though the kidney can regenerate after injury, the molecular mechanisms regulating this process remain poorly understood. Pax2 and Pax8 are DNA-binding transcription factors that are upregulated after kidney injury. However, their function during the response to AKI remains incompletely defined. In this report, we develop a model of ischemic AKI in female mice with mosaic nephrons comprised of both Pax2 and Pax8 mutant and wildtype proximal tubule cells with fixed lineages. Each population therefore experiences identical physiological and injury conditions in the same animal. In these female mice, we show that before injury the S1 and S2 segments of the proximal tubule are depleted of Pax-mutant cells while mutant cells are preserved in the S3 segment. Retained S3 Pax-mutant cells develop a preconditioned phenotype that overlaps with gene expression signatures in AKI. In response to ischemic AKI, which most strongly damages the S3 proximal tubule, injury-resistant mutant S3 cells are more likely to proliferate. Pax-mutant cells then preferentially repopulate the S3 segment of the proximal tubule. Our results indicate that Pax2 and Pax8 are not required for regeneration of the S3 proximal tubule after ischemic AKI. Together, our findings indicate that Pax proteins play a critical role determining the segment-specific proximal tubule gene expression patterns that dictate vulnerability to ischemic injury.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信