饮食中过量的钠能恢复小鼠肾小球因内质网分子伴侣蛋白 GRP170 缺失而导致的电解质和水的平衡。

Aidan W Porter, Hannah E Vorndran, Allison Marciszyn, Stephanie M Mutchler, Arohan R Subramanya, Thomas R Kleyman, Linda M Hendershot, Jeffrey L Brodsky, Teresa M Buck
{"title":"饮食中过量的钠能恢复小鼠肾小球因内质网分子伴侣蛋白 GRP170 缺失而导致的电解质和水的平衡。","authors":"Aidan W Porter, Hannah E Vorndran, Allison Marciszyn, Stephanie M Mutchler, Arohan R Subramanya, Thomas R Kleyman, Linda M Hendershot, Jeffrey L Brodsky, Teresa M Buck","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The maintenance of fluid and electrolyte homeostasis by the kidney requires proper folding and trafficking of ion channels and transporters in kidney epithelia. Each of these processes requires a specific subset of a diverse class of proteins termed molecular chaperones. One such chaperone is GRP170, which is an Hsp70-like, endoplasmic reticulum (ER)-localized chaperone that plays roles in protein quality control and protein folding in the ER. We previously determined that loss of GRP170 in the mouse nephron leads to hypovolemia, electrolyte imbalance, and rapid weight loss. In addition, GRP170-deficient mice develop an AKI-like phenotype, typified by tubular injury, elevation of kidney injury markers, and induction of the unfolded protein response (UPR). By using an inducible GRP170 knockout cellular model, we confirmed that GRP170 depletion induces the UPR, triggers apoptosis, and disrupts protein homeostasis. Based on these data, we hypothesized that UPR induction underlies hyponatremia and volume depletion in these rodents, and that these and other phenotypes might be rectified by sodium supplementation. To test this hypothesis, control and GRP170 tubule-specific knockout mice were provided a diet containing 8% sodium chloride. We discovered that sodium supplementation improved electrolyte imbalance and kidney injury markers in a sex-specific manner but was unable to restore weight or tubule integrity. These results are consistent with UPR induction contributing to the kidney injury phenotype in the nephron-specific GR170 knockout model and indicate that GRP170 function in kidney epithelia is essential to both maintain electrolyte balance and ER homeostasis.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"None"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Excess dietary sodium restores electrolyte and water homeostasis caused by loss of the endoplasmic reticulum molecular chaperone, GRP170, in the mouse nephron.\",\"authors\":\"Aidan W Porter, Hannah E Vorndran, Allison Marciszyn, Stephanie M Mutchler, Arohan R Subramanya, Thomas R Kleyman, Linda M Hendershot, Jeffrey L Brodsky, Teresa M Buck\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The maintenance of fluid and electrolyte homeostasis by the kidney requires proper folding and trafficking of ion channels and transporters in kidney epithelia. Each of these processes requires a specific subset of a diverse class of proteins termed molecular chaperones. One such chaperone is GRP170, which is an Hsp70-like, endoplasmic reticulum (ER)-localized chaperone that plays roles in protein quality control and protein folding in the ER. We previously determined that loss of GRP170 in the mouse nephron leads to hypovolemia, electrolyte imbalance, and rapid weight loss. In addition, GRP170-deficient mice develop an AKI-like phenotype, typified by tubular injury, elevation of kidney injury markers, and induction of the unfolded protein response (UPR). By using an inducible GRP170 knockout cellular model, we confirmed that GRP170 depletion induces the UPR, triggers apoptosis, and disrupts protein homeostasis. Based on these data, we hypothesized that UPR induction underlies hyponatremia and volume depletion in these rodents, and that these and other phenotypes might be rectified by sodium supplementation. To test this hypothesis, control and GRP170 tubule-specific knockout mice were provided a diet containing 8% sodium chloride. We discovered that sodium supplementation improved electrolyte imbalance and kidney injury markers in a sex-specific manner but was unable to restore weight or tubule integrity. These results are consistent with UPR induction contributing to the kidney injury phenotype in the nephron-specific GR170 knockout model and indicate that GRP170 function in kidney epithelia is essential to both maintain electrolyte balance and ER homeostasis.</p>\",\"PeriodicalId\":93867,\"journal\":{\"name\":\"American journal of physiology. Renal physiology\",\"volume\":\" \",\"pages\":\"None\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Renal physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Renal physiology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

肾脏维持液体和电解质平衡需要肾脏上皮中离子通道和转运体的适当折叠和运输。这些过程中的每一个过程都需要被称为分子伴侣的各类蛋白质中的一个特定子集。GRP170就是这样一种伴侣蛋白,它是一种类似于Hsp70的内质网(ER)定位伴侣蛋白,在蛋白质质量控制和ER中的蛋白质折叠中发挥作用。我们以前曾发现,小鼠肾小球中 GRP170 的缺失会导致血容量不足、电解质失衡和体重迅速下降。此外,GRP170 缺失的小鼠会出现类似 AKI 的表型,其典型特征是肾小管损伤、肾损伤标志物升高以及诱导未折叠蛋白反应(UPR)。通过使用诱导性 GRP170 基因敲除细胞模型,我们证实 GRP170 缺失会诱导 UPR、引发细胞凋亡并破坏蛋白质稳态。基于这些数据,我们假设 UPR 诱导是这些啮齿类动物低钠血症和容量耗竭的基础,而这些表型和其他表型可能通过补充钠来纠正。为了验证这一假设,我们为对照组和 GRP170 肾小管特异性基因敲除小鼠提供了含有 8% 氯化钠的食物。我们发现,补充钠能以性别特异性的方式改善电解质失衡和肾损伤指标,但却无法恢复体重或肾小管完整性。这些结果与在肾小管特异性 GR170 基因敲除模型中 UPR 诱导导致肾损伤表型一致,并表明 GRP170 在肾上皮细胞中的功能对于维持电解质平衡和 ER 平衡至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Excess dietary sodium restores electrolyte and water homeostasis caused by loss of the endoplasmic reticulum molecular chaperone, GRP170, in the mouse nephron.

The maintenance of fluid and electrolyte homeostasis by the kidney requires proper folding and trafficking of ion channels and transporters in kidney epithelia. Each of these processes requires a specific subset of a diverse class of proteins termed molecular chaperones. One such chaperone is GRP170, which is an Hsp70-like, endoplasmic reticulum (ER)-localized chaperone that plays roles in protein quality control and protein folding in the ER. We previously determined that loss of GRP170 in the mouse nephron leads to hypovolemia, electrolyte imbalance, and rapid weight loss. In addition, GRP170-deficient mice develop an AKI-like phenotype, typified by tubular injury, elevation of kidney injury markers, and induction of the unfolded protein response (UPR). By using an inducible GRP170 knockout cellular model, we confirmed that GRP170 depletion induces the UPR, triggers apoptosis, and disrupts protein homeostasis. Based on these data, we hypothesized that UPR induction underlies hyponatremia and volume depletion in these rodents, and that these and other phenotypes might be rectified by sodium supplementation. To test this hypothesis, control and GRP170 tubule-specific knockout mice were provided a diet containing 8% sodium chloride. We discovered that sodium supplementation improved electrolyte imbalance and kidney injury markers in a sex-specific manner but was unable to restore weight or tubule integrity. These results are consistent with UPR induction contributing to the kidney injury phenotype in the nephron-specific GR170 knockout model and indicate that GRP170 function in kidney epithelia is essential to both maintain electrolyte balance and ER homeostasis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信