Aylin Uskudar-Guclu, Sezin Unlu, Hanife Salih-Dogan, Suleyman Yalcin, Ahmet Basustaoglu
{"title":"Biological and genomic characteristics of three novel bacteriophages and a phage-plasmid of <i>Klebsiella pneumoniae</i>.","authors":"Aylin Uskudar-Guclu, Sezin Unlu, Hanife Salih-Dogan, Suleyman Yalcin, Ahmet Basustaoglu","doi":"10.1139/cjm-2023-0188","DOIUrl":"10.1139/cjm-2023-0188","url":null,"abstract":"<p><p>Bacteriophages have emerged as promising candidates for the treatment of difficult-to-treat bacterial infections. The aim of this study is to isolate and characterize phages infecting carbapenem-resistant and extended-spectrum beta-lactamase producer <i>Klebsiella pneumoniae</i> isolates. Water samples were taken for the isolation of bacteriophages. One-step growth curve, the optimal multiplicity of infection (MOI), thermal and pH stabilities, transmission electron microscopy and whole-genome sequencing of phages were studied. Four phages were isolated and named <i>Klebsiella</i> phage Kpn02, Kpn17, Kpn74, and Kpn13. The optimal MOI and latent periods of phage Kpn02, Kpn17, Kpn74, and Kpn13 were 10, 1, 0.001, and 100 PFU/CFU and 20, 10, 20, and 30 min, respectively. Burst sizes ranged from 811 to 2363. No known antibiotic resistance and virulence genes were identified. No tRNAs were detected except <i>Klebsiella</i> phage Kpn02 which encodes 24 tRNAs. Interestingly, <i>Klebsiella</i> phage Kpn74 was predicted to be a lysogenic phage whose prophage is a linear plasmid molecule with covalently closed ends. Of the <i>Klebsiella</i>-infecting phages presented in current study, virulent phages suggest that they may represent candidate therapeutic agents against MDR <i>K. pneumoniae</i>, based on short latent period, high burst sizes and no known antibiotic resistance and virulence genes in their genomes.</p>","PeriodicalId":9381,"journal":{"name":"Canadian journal of microbiology","volume":" ","pages":"213-225"},"PeriodicalIF":2.8,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140048851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fatema A Nisha, Janice N A Tagoe, Amanda B Pease, Shelley M Horne, Angel Ugrinov, Barney A Geddes, Birgit M Prüß
{"title":"Plant seedlings of peas, tomatoes, and cucumbers exude compounds that are needed for growth and chemoattraction of <i>Rhizobium leguminosarum</i> bv. <i>viciae</i> 3841 and <i>Azospirillum brasilense</i> Sp7.","authors":"Fatema A Nisha, Janice N A Tagoe, Amanda B Pease, Shelley M Horne, Angel Ugrinov, Barney A Geddes, Birgit M Prüß","doi":"10.1139/cjm-2023-0217","DOIUrl":"10.1139/cjm-2023-0217","url":null,"abstract":"<p><p>This study characterizes seedling exudates of peas, tomatoes, and cucumbers at the level of chemical composition and functionality. A plant experiment confirmed that <i>Rhizobium leguminosarum</i> bv. <i>viciae</i> 3841 enhanced growth of pea shoots, while <i>Azospirillum brasilense</i> Sp7 supported growth of pea, tomato, and cucumber roots. Chemical analysis of exudates after 1 day of seedling incubation in water yielded differences between the exudates of the three plants. Most remarkably, cucumber seedling exudate did not contain detectable sugars. All exudates contained amino acids, nucleobases/nucleosides, and organic acids, among other compounds. Cucumber seedling exudate contained reduced glutathione. Migration on semi solid agar plates containing individual exudate compounds as putative chemoattractants revealed that <i>R. leguminosarum</i> bv. <i>viciae</i> was more selective than <i>A. brasilense</i>, which migrated towards any of the compounds tested. Migration on semi solid agar plates containing 1:1 dilutions of seedling exudate was observed for each of the combinations of bacteria and exudates tested. Likewise, <i>R. leguminosarum</i> bv. <i>viciae</i> and <i>A. brasilense</i> grew on each of the three seedling exudates, though at varying growth rates. We conclude that the seedling exudates of peas, tomatoes, and cucumbers contain everything that is needed for their symbiotic bacteria to migrate and grow on.</p>","PeriodicalId":9381,"journal":{"name":"Canadian journal of microbiology","volume":" ","pages":"150-162"},"PeriodicalIF":2.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140012184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicole Lerminiaux, Ken Fakharuddin, Michael R Mulvey, Laura Mataseje
{"title":"Do we still need Illumina sequencing data? Evaluating Oxford Nanopore Technologies R10.4.1 flow cells and the Rapid v14 library prep kit for Gram negative bacteria whole genome assemblies.","authors":"Nicole Lerminiaux, Ken Fakharuddin, Michael R Mulvey, Laura Mataseje","doi":"10.1139/cjm-2023-0175","DOIUrl":"10.1139/cjm-2023-0175","url":null,"abstract":"<p><p>The best whole genome assemblies are currently built from a combination of highly accurate short-read sequencing data and long-read sequencing data that can bridge repetitive and problematic regions. Oxford Nanopore Technologies (ONT) produce long-read sequencing platforms and they are continually improving their technology to obtain higher quality read data that is approaching the quality obtained from short-read platforms such as Illumina. As these innovations continue, we evaluated how much ONT read coverage produced by the Rapid Barcoding Kit v14 (SQK-RBK114) is necessary to generate high-quality hybrid and long-read-only genome assemblies for a panel of carbapenemase-producing <i>Enterobacterales</i> bacterial isolates. We found that 30× long-read coverage is sufficient if Illumina data are available, and that more (at least 100× long-read coverage is recommended for long-read-only assemblies. Illumina polishing is still improving single nucleotide variants (SNVs) and INDELs in long-read-only assemblies. We also examined if antimicrobial resistance genes could be accurately identified in long-read-only data, and found that Flye assemblies regardless of ONT coverage detected >96% of resistance genes at 100% identity and length. Overall, the Rapid Barcoding Kit v14 and long-read-only assemblies can be an optimal sequencing strategy (i.e., plasmid characterization and AMR detection) but finer-scale analyses (i.e., SNV) still benefit from short-read data.</p>","PeriodicalId":9381,"journal":{"name":"Canadian journal of microbiology","volume":" ","pages":"178-189"},"PeriodicalIF":2.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139734521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antoine-O Lirette, Ya-Jou Chen, Nastasia J Freyria, Esteban Góngora, Charles W Greer, Lyle G Whyte
{"title":"Characterization of hydrocarbon degraders from Northwest Passage beach sediments and assessment of their ability for bioremediation.","authors":"Antoine-O Lirette, Ya-Jou Chen, Nastasia J Freyria, Esteban Góngora, Charles W Greer, Lyle G Whyte","doi":"10.1139/cjm-2023-0093","DOIUrl":"10.1139/cjm-2023-0093","url":null,"abstract":"<p><p>Global warming-induced sea ice loss in the Canadian Northwest Passage (NWP) will result in more shipping traffic, increasing the risk of oil spills. Microorganisms inhabiting NWP beach sediments may degrade hydrocarbons, offering a potential bioremediation strategy. In this study, the characterization and genomic analyses of 22 hydrocarbon-biodegradative bacterial isolates revealed that they contained a diverse range of key alkane and aromatic hydrocarbon-degradative genes, as well as cold and salt tolerance genes indicating they are highly adapted to the extreme Arctic environment. Some isolates successfully degraded Ultra Low Sulfur Fuel Oil (ULSFO) at temperatures as low as -5 °C and high salinities (3%-10%). Three isolates were grown in liquid medium containing ULSFO as sole carbon source over 3 months and variation of hydrocarbon concentration was measured at three time points to determine their rate of hydrocarbon biodegradation. Our results demonstrate that two isolates (<i>Rhodococcus</i> sp. R1B_2T and <i>Pseudarthrobacter</i> sp. R2D_1T) possess complete degradation pathways and can grow on alkane and aromatic components of ULSFO under Arctic conditions. Overall, these results demonstrate that diverse hydrocarbon-degrading microorganisms exist in the NWP beach sediments, offering a potential bioremediation strategy in the events of a marine fuel spill reaching the shores of the NWP.</p>","PeriodicalId":9381,"journal":{"name":"Canadian journal of microbiology","volume":" ","pages":"163-177"},"PeriodicalIF":2.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139729058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spatial arrangement and density variations in the cell envelope of <i>Deinococcus radiodurans</i>.","authors":"Domenica Farci, Dario Piano","doi":"10.1139/cjm-2023-0163","DOIUrl":"10.1139/cjm-2023-0163","url":null,"abstract":"<p><p>The cell envelope of the poly-extremophile bacterium <i>Deinococcus radiodurans</i> is renowned for its highly organized structure and unique functional characteristics. In this bacterium, a precise regularity characterizes not just the S-layer, but it also extends to the underlying cell envelope layers, resulting in a dense and tightly arranged configuration. This regularity is attributed to a minimum of three protein complexes located at the outer membrane level. Together, they constitute a recurring structural unit that extends across the cell envelope, effectively tiling the entirety of the cell body. Nevertheless, a comprehensive grasp of the vacant spaces within each layer and their functional roles remains limited. In this study, we delve into these aspects by integrating the state of the art with structural calculations. This approach provides crucial evidence supporting an evolutive pressure intricately linked to surface phenomena depending on the environmental conditions.</p>","PeriodicalId":9381,"journal":{"name":"Canadian journal of microbiology","volume":" ","pages":"190-198"},"PeriodicalIF":2.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140206384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Flore Oudouhou, Claire Morin, Mickael Bouin, Christiane Gaudreau, Christian Baron
{"title":"Inhibition of the type IV secretion system from antibiotic-resistant <i>Helicobacter pylori</i> clinical isolates supports the potential of Cagα as an anti-virulence target.","authors":"Flore Oudouhou, Claire Morin, Mickael Bouin, Christiane Gaudreau, Christian Baron","doi":"10.1139/cjm-2023-0168","DOIUrl":"10.1139/cjm-2023-0168","url":null,"abstract":"<p><p><i>Helicobacter pylori</i> resistance to antibiotics is a growing problem and it increasingly leads to treatment failure. While the bacterium is present worldwide, the severity of clinical outcomes is highly dependent on the geographical origin and genetic characteristics of the strains. One of the major virulence factors identified in <i>H. pylori</i> is the <i>cag</i> pathogenicity island (<i>cag</i>PAI), which encodes a type IV secretion system (T4SS) used to translocate effectors into human cells. Here, we investigated the genetic variability of the <i>cag</i>PAI among 13 antibiotic-resistant <i>H. pylori</i> strains that were isolated from patient biopsies in Québec. Seven of the clinical strains carried the <i>cag</i>PAI, but only four could be readily cultivated under laboratory conditions. We observed variability of the sequences of CagA and CagL proteins that are encoded by the <i>cag</i>PAI. All clinical isolates induce interleukin-8 secretion and morphological changes upon co-incubation with gastric cancer cells and two of them produce extracellular T4SS pili. Finally, we demonstrate that molecule 1G2, a small molecule inhibitor of the Cagα protein from the model strain <i>H. pylori</i> 26695, reduces interleukin-8 secretion in one of the clinical isolates. Co-incubation with 1G2 also inhibits the assembly of T4SS pili, suggesting a mechanism for its action on T4SS function.</p>","PeriodicalId":9381,"journal":{"name":"Canadian journal of microbiology","volume":" ","pages":"119-127"},"PeriodicalIF":2.8,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139097367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luis Enrique Chaves-González, Daniela Jaikel-Víquez, Stefany Lozada-Alvarado, Fabio Granados-Chinchilla
{"title":"Unveiling the fungal color palette: pigment analysis of <i>Fusarium solani</i> species complex and <i>Curvularia verruculosa</i> clinical isolates.","authors":"Luis Enrique Chaves-González, Daniela Jaikel-Víquez, Stefany Lozada-Alvarado, Fabio Granados-Chinchilla","doi":"10.1139/cjm-2023-0181","DOIUrl":"10.1139/cjm-2023-0181","url":null,"abstract":"<p><p>Fungal species in the <i>Nectriaceae</i>, such as <i>Fusarium</i> spp. (<i>Hypocreales: Nectriaceae</i>), are etiologic agents of hyalohyphomycosis capable of producing violaceous or yellowish pigments under certain conditions, while <i>Curvularia</i> spp. (<i>Pleosporales: Pleosporaceae</i>) are agents of phaeohyphomycosis and typically produce melanin in their cell walls. In nectriaceous and pleosporaceous fungi, these pigments are mainly constituted by polyketides (e.g., azaphilones, naphthoquinones, and hydroxyanthraquinones). Considering the importance of pigments synthesized by these genera, this work focused on the selective extraction of pigments produced by eight <i>Fusarium solani</i> species complex and one <i>Curvularia verruculosa</i> isolate recovered from dermatomycosis specimens, their separation, purification, and posterior chemical analysis. The pigments were characterized through spectral and acid-base analysis, and their maximum production time was determined. Moreover, spectral identification of isolates was carried out to approach the taxonomic specificity of pigment production. Herein we describe the isolation and characterization of three acidic pigments, yellowish and pinkish azaphilones (i.e., coaherin A and sclerotiorin), and a purplish xanthone, reported for the first time in the <i>Nectriaceae</i> and <i>Pleosporaceae</i>, which appear to be synthesized in a species-independent manner, in the case of fusaria.</p>","PeriodicalId":9381,"journal":{"name":"Canadian journal of microbiology","volume":" ","pages":"135-149"},"PeriodicalIF":2.8,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139485250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"<i>Enterococcus faecium</i> inhibits NF-κB/NLRP3/Caspase-1 signaling pathway to antagonize enterotoxigenic <i>Escherichia coli</i>-mediated inflammatory response.","authors":"Huibin Zheng, Sicheng Pu, Jiahao Liu, Falong Yang, Dechun Chen","doi":"10.1139/cjm-2023-0038","DOIUrl":"10.1139/cjm-2023-0038","url":null,"abstract":"<p><p>Enterotoxigenic <i>Escherichia coli</i> (ETEC) can cause intestinal inflammation and diarrhea in yaks, which has a negative impact on their economic value. In recent years, probiotics have gained increasing attention as a pure, natural, nontoxic, harmless, and residue-free additive. However, the underlying mechanisms by which probiotics safeguard against ETEC are not completely elucidated. This study aimed to investigate the protective effect of <i>Enterococcus faecium</i> (<i>E. faecium</i>) against ETEC infection in mice through oral gavage. Morphological changes were examined through light microscopy. The expressions of inflammatory cytokines (IL-1β, IL-6, TNF-α, IL-10, NF-κB, and NLRP3), tight junction protein (ZO-1, Claudin-1), and pyroptosis (Caspase-1, Caspase-4, and gasdermin D (GSDMD)) were detected using immunohistochemistry and quantitative real-time PCR. The results indicate that ETEC infection triggers the activation of inflammation-related pathways (NF-κB) and NLRP3 inflammasome, leading to the expression of a large number of inflammatory cytokines. Additionally, the activation of NLRP3 leads to the release of GSDMD activation through Caspase-1, ultimately resulting in inflammatory injury and pyroptosis. Feeding mice <i>E. faecium</i> early resulted in an increase in the expression of tight junction protein, a reduction in inflammatory cytokines, and alleviation of inflammatory injury and pyroptosis in intestinal tissues. Our research indicates that <i>E. faecium</i> has the ability to antagonize ETEC and provide protection to the gastrointestinal mucosa in mice.</p>","PeriodicalId":9381,"journal":{"name":"Canadian journal of microbiology","volume":" ","pages":"109-118"},"PeriodicalIF":2.8,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138884485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xue Li, Wei Lian, Miaomiao Zhang, Xi Luo, Yiquan Zhang, Renfei Lu
{"title":"QsvR and OpaR coordinately regulate the transcription of <i>cpsS</i> and <i>cpsR</i> in <i>Vibrio parahaemolyticus</i>.","authors":"Xue Li, Wei Lian, Miaomiao Zhang, Xi Luo, Yiquan Zhang, Renfei Lu","doi":"10.1139/cjm-2023-0196","DOIUrl":"10.1139/cjm-2023-0196","url":null,"abstract":"<p><p><i>Vibrio parahaemolyticus</i>, the leading cause of seafood-associated gastroenteritis, has a strong capacity to form biofilms on surfaces, which is strictly regulated by the CpsS-CpsR-CpsQ regulatory cascade. OpaR, a master regulator of quorum sensing, is a global regulator that controls multiple cellular pathways including biofilm formation and virulence. QsvR is an AraC-type regulator that works coordinately with OpaR to control biofilm formation and virulence gene expression of <i>V. parahaemolyticus</i>. QsvR and OpaR activate <i>cpsQ</i> transcription. OpaR also activates <i>cpsR</i> transcription, but lacks the detailed regulatory mechanisms. Furthermore, it is still unknown whether QsvR regulates <i>cpsR</i> transcription, as well as whether QsvR and OpaR regulate <i>cpsS</i> transcription. In this study, the results of quantitative real-time PCR and LacZ fusion assays demonstrated that deletion of <i>qsvR</i> and/or <i>opaR</i> significantly decreased the expression levels of <i>cpsS</i> and <i>cpsR</i> compared to the wild-type strain. However, the results of two-plasmid <i>lacZ</i> reporter and electrophoretic mobility-shift assays showed that both QsvR and OpaR were unable to bind the regulatory DNA regions of <i>cpsS</i> and <i>cpsR</i>. Therefore, transcription of <i>cpsS</i> and <i>cpsR</i> was coordinately and indirectly activated by QsvR and OpaR. This work enriched our knowledge on the regulatory network of biofilm formation in <i>V. parahaemolyticus</i>.</p>","PeriodicalId":9381,"journal":{"name":"Canadian journal of microbiology","volume":" ","pages":"128-134"},"PeriodicalIF":2.8,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139982431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hydrogen sulfide regulates arsenic-induced cell death in yeast cells by modulating the antioxidative system.","authors":"Lihua Wu, Xia Yao, Haiyan Li, Yanfei Chen","doi":"10.1139/cjm-2023-0068","DOIUrl":"10.1139/cjm-2023-0068","url":null,"abstract":"<p><p>Arsenic (As) is a metal with potentially toxic effects on different organisms. Hydrogen sulfide (H<sub>2</sub>S) plays a vital role in mitigating heavy metal toxicity by reducing oxidative stress in plants and animals. However, the role of H<sub>2</sub>S in alleviating arsenic toxicity in yeast cells remains unclear. In this study, the role of NaHS (exogenous physiological H<sub>2</sub>S) in alleviating As-induced yeast cell death was investigated. Yeast cells in the logarithmic phase were pretreated with 0.05 mmol/L NaHS for 6 h, and then incubated in the YPD medium with or without 1 mmol/L As. After 12 h of treatment, relative survival rate, H<sub>2</sub>S content, oxidative stress biomarkers, and antioxidant machinery were measured. Our results showed that sodium arsenite-induced yeast cell death and pretreatment with 0.05 mmol/L NaHS significantly alleviated sodium arsenite-induced cell death. Under sodium arsenite conditions, the levels of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) increased, accompanied by the inhibition of the catalase (CAT) activity and the downregulation of <i>CTT1</i> expression. However, the activities of the superoxide dismutase (SOD) and glutathion peroxidase (GPX) increased, and the expression of <i>SOD1</i> and <i>GPX2</i> was markedly upregulated in the group treated with sodium arsenite. When yeast cells were pretreated with NaHS, the intracellular ROS and MDA levels decreased significantly, and the activities of SOD, CAT, and GPX increased significantly. This was associated with a significant increase in relative survival rate and H<sub>2</sub>S content compared to the arsenic treatment alone. Our findings indicate that NaHS alleviates sodium arsenite-induced yeast cell death, mainly by enhancing the antioxidant defense system.</p>","PeriodicalId":9381,"journal":{"name":"Canadian journal of microbiology","volume":" ","pages":"102-108"},"PeriodicalIF":2.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138797146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}