Prairie soil improves wheat establishment and accelerates the developmental transition to flowering compared to agricultural soils.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Accounts of Chemical Research Pub Date : 2024-11-01 Epub Date: 2024-08-07 DOI:10.1139/cjm-2023-0237
Renee H Petipas, Cassidy Peru, Janice M Parks, Maren L Friesen, Chandra N Jack
{"title":"Prairie soil improves wheat establishment and accelerates the developmental transition to flowering compared to agricultural soils.","authors":"Renee H Petipas, Cassidy Peru, Janice M Parks, Maren L Friesen, Chandra N Jack","doi":"10.1139/cjm-2023-0237","DOIUrl":null,"url":null,"abstract":"<p><p>Less than 1% of native prairie lands remain in the United States. Located in eastern Washington, the rare habitat called Palouse prairie was largely converted to wheat monocropping. With this conversion came numerous physical, chemical, and biological changes to the soil that may ultimately contribute to reduced wheat yields. Here, we explored how wheat (<i>Tritcum aestivum</i> L.) seedling establishment, plant size, and heading, signifying the developmental transition to flowering, were affected by being planted in prairie soil versus agricultural soils. We then sought to understand whether the observed effects were the result of changes to the soil microbiota due to agricultural intensification. We found that prairie soil enhanced both the probability of wheat seedling survival and heading compared to agricultural soil; however, wheat growth was largely unaffected by soil source. We did not detect effects on wheat developmental transitions or phenotype when inoculated with prairie microbes compared with agricultural microbes, but we did observe general antagonistic effects of microbes on plant size, regardless of soil source. This work indicates that agricultural intensification has affected soils in a way that changes early seedling establishment and the timing of heading for wheat, but these effects may not be caused by microbes, and instead may be caused by soil nutrient conditions.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/cjm-2023-0237","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Less than 1% of native prairie lands remain in the United States. Located in eastern Washington, the rare habitat called Palouse prairie was largely converted to wheat monocropping. With this conversion came numerous physical, chemical, and biological changes to the soil that may ultimately contribute to reduced wheat yields. Here, we explored how wheat (Tritcum aestivum L.) seedling establishment, plant size, and heading, signifying the developmental transition to flowering, were affected by being planted in prairie soil versus agricultural soils. We then sought to understand whether the observed effects were the result of changes to the soil microbiota due to agricultural intensification. We found that prairie soil enhanced both the probability of wheat seedling survival and heading compared to agricultural soil; however, wheat growth was largely unaffected by soil source. We did not detect effects on wheat developmental transitions or phenotype when inoculated with prairie microbes compared with agricultural microbes, but we did observe general antagonistic effects of microbes on plant size, regardless of soil source. This work indicates that agricultural intensification has affected soils in a way that changes early seedling establishment and the timing of heading for wheat, but these effects may not be caused by microbes, and instead may be caused by soil nutrient conditions.

与农业土壤相比,草原土壤能改善小麦的生长发育,并加快向开花期的过渡。
美国仅存不到 1%的原生大草原。位于华盛顿州东部的稀有栖息地帕卢斯草原在很大程度上被改种了小麦。随着这种转变,土壤发生了许多物理、化学和生物变化,最终可能导致小麦减产。在这里,我们探讨了小麦(Tritcum aestivum L.)幼苗的建立、植株的大小以及象征着向开花过渡的生长发育如何受到草原土壤和农业土壤的影响。然后,我们试图了解所观察到的影响是否是农业集约化导致土壤微生物群发生变化的结果。我们发现,与农业土壤相比,草原土壤提高了小麦幼苗的存活率和抽穗率,但小麦的生长基本不受土壤来源的影响。与农业微生物相比,我们没有发现接种草原微生物会影响小麦的发育转变或表型,但我们确实观察到微生物对植株大小的普遍拮抗作用,与土壤来源无关。这项研究表明,农业集约化对土壤的影响改变了小麦的早期立苗和抽穗期,但这些影响可能不是由微生物引起的,而是由土壤养分条件引起的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信