气候变化模拟介观模式下有机覆盖物和矿山废物的生物地球化学稳定性。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Accounts of Chemical Research Pub Date : 2024-11-01 Epub Date: 2024-08-30 DOI:10.1139/cjm-2024-0064
Asma Asemaninejad, Ted Mackinnon, Sean Langley
{"title":"气候变化模拟介观模式下有机覆盖物和矿山废物的生物地球化学稳定性。","authors":"Asma Asemaninejad, Ted Mackinnon, Sean Langley","doi":"10.1139/cjm-2024-0064","DOIUrl":null,"url":null,"abstract":"<p><p>Mine environments in boreal and sub-boreal zones are expected to experience extreme weather events, increases in temperature, and shifts in precipitation patterns. Climate change impacts on geochemical stability of tailings contaminants and reclamation structures have been identified as important climate-related challenges to Canadian mining sector. Adapting current reclamation strategies for climate change will improve long-term efficiency and viability of mine tailings remediation/restoration strategies under a changing climate. Accordingly, mesocosm experiments were conducted to investigate associations of climate-driven shifts in microbial communities and functions with changes in the geochemistry of organic covers and underlying tailings. Our results show that warming appears to significantly reduce C:N of organic cover and promote infiltration of nitrogen into deeper, unoxidized strata of underlying tailings. We also observed an increase in the abundance of some nitrate reducers and sulfide oxidizers in microbial communities in underlying tailings. These results raise the concern that warming might trigger oxidation of sulfide minerals (linked to nitrate reduction) in deeper unoxidized strata where the oxygen has been eliminated. Therefore, it would be necessary to have monitoring programs to track functionality of covers in response to climate change conditions. These findings have implications for development of climate resilient mine tailings remediation/restoration strategies.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biogeochemical stability of organic covers and mine wastes under climate change simulated mesocosms.\",\"authors\":\"Asma Asemaninejad, Ted Mackinnon, Sean Langley\",\"doi\":\"10.1139/cjm-2024-0064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mine environments in boreal and sub-boreal zones are expected to experience extreme weather events, increases in temperature, and shifts in precipitation patterns. Climate change impacts on geochemical stability of tailings contaminants and reclamation structures have been identified as important climate-related challenges to Canadian mining sector. Adapting current reclamation strategies for climate change will improve long-term efficiency and viability of mine tailings remediation/restoration strategies under a changing climate. Accordingly, mesocosm experiments were conducted to investigate associations of climate-driven shifts in microbial communities and functions with changes in the geochemistry of organic covers and underlying tailings. Our results show that warming appears to significantly reduce C:N of organic cover and promote infiltration of nitrogen into deeper, unoxidized strata of underlying tailings. We also observed an increase in the abundance of some nitrate reducers and sulfide oxidizers in microbial communities in underlying tailings. These results raise the concern that warming might trigger oxidation of sulfide minerals (linked to nitrate reduction) in deeper unoxidized strata where the oxygen has been eliminated. Therefore, it would be necessary to have monitoring programs to track functionality of covers in response to climate change conditions. These findings have implications for development of climate resilient mine tailings remediation/restoration strategies.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1139/cjm-2024-0064\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/cjm-2024-0064","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

寒带和亚寒带的矿山环境预计将经历极端天气事件、气温升高和降水模式变化。气候变化对尾矿污染物地球化学稳定性和复垦结构的影响已被确定为加拿大采矿业面临的与气候相关的重要挑战。针对气候变化调整当前的复垦策略将提高矿山尾矿补救/恢复策略在气候变化下的长期效率和可行性。因此,我们进行了中型宇宙实验,研究气候驱动的微生物群落和功能变化与有机覆盖物和下层尾矿地球化学变化之间的关联。我们的结果表明,气候变暖似乎大大降低了有机覆盖层的碳氮比,并促进氮渗入下层尾矿更深的未氧化层。我们还观察到,下层尾矿微生物群落中一些硝酸盐还原剂和硫化物氧化剂的丰度有所增加。这些结果引起了人们的担忧,即气候变暖可能会引发硫化物矿物质的氧化(与硝酸盐还原有关),而在更深的未氧化地层中,氧气已经被消除。因此,有必要制定监测计划,跟踪覆盖层在气候变化条件下的功能。这些发现对制定适应气候的矿山尾矿补救/恢复战略具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biogeochemical stability of organic covers and mine wastes under climate change simulated mesocosms.

Mine environments in boreal and sub-boreal zones are expected to experience extreme weather events, increases in temperature, and shifts in precipitation patterns. Climate change impacts on geochemical stability of tailings contaminants and reclamation structures have been identified as important climate-related challenges to Canadian mining sector. Adapting current reclamation strategies for climate change will improve long-term efficiency and viability of mine tailings remediation/restoration strategies under a changing climate. Accordingly, mesocosm experiments were conducted to investigate associations of climate-driven shifts in microbial communities and functions with changes in the geochemistry of organic covers and underlying tailings. Our results show that warming appears to significantly reduce C:N of organic cover and promote infiltration of nitrogen into deeper, unoxidized strata of underlying tailings. We also observed an increase in the abundance of some nitrate reducers and sulfide oxidizers in microbial communities in underlying tailings. These results raise the concern that warming might trigger oxidation of sulfide minerals (linked to nitrate reduction) in deeper unoxidized strata where the oxygen has been eliminated. Therefore, it would be necessary to have monitoring programs to track functionality of covers in response to climate change conditions. These findings have implications for development of climate resilient mine tailings remediation/restoration strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信