Canadian journal of microbiology最新文献

筛选
英文 中文
Soil microbiomes from the groundnut basin of Senegal contain plant growth-promoting bacteria with potential for crop improvement in arid soils. 塞内加尔落花生盆地的土壤微生物组含有促进植物生长的细菌,具有改良干旱土壤中作物的潜力。
IF 1.8 4区 生物学
Canadian journal of microbiology Pub Date : 2024-08-21 DOI: 10.1139/cjm-2024-0031
Niokhor Bakhoum, Ethan Humm, Noor Khan, Ann M Hirsch
{"title":"Soil microbiomes from the groundnut basin of Senegal contain plant growth-promoting bacteria with potential for crop improvement in arid soils.","authors":"Niokhor Bakhoum, Ethan Humm, Noor Khan, Ann M Hirsch","doi":"10.1139/cjm-2024-0031","DOIUrl":"10.1139/cjm-2024-0031","url":null,"abstract":"<p><p>The principal methods to maintain soil fertility in Sahel soils are largely allowing fields to go fallow and manure addition. These methods are not currently sufficient to improve soil fertility. To promote biological amendments, we aimed to understand the plant-growth promoting traits of various soil microbial isolates. The soils collected in different areas in Senegal exhibited a similar eDNA profile of bacteria; the dominant microbes were Firmicutes, followed by Proteobacteria and Actinobacteria. Of 17 isolates identified and tested, the vast majority solubilized rock phosphate and a large number grew on culture medium containing 6% salt, but very few degraded starches or hydrolysed carboxymethyl cellulose or produced siderophores. Upon single inoculation, <i>Peribacillus asahii</i> RC16 and <i>Dietzia cinnamea</i> 55 significantly increased pearl millet growth and yield parameters. For cowpea, plant shoot length was significantly increased by <i>Pseudarthrobacter phenanthrenivorans</i> MKAG7 co-inoculated with <i>Bradyrhizobium elkanii</i> 20TpCR5, and nearly all rhizobacteria tested significantly improved cowpea dry weight and pod weight. Additionally, the double inoculation of <i>Dietzia cinnamea</i> 55 and MKAG7 significantly increased shoot length, dry weight, and seed head weight of pearl millet. These isolates are promising inoculants because they are ecologically-friendly, cost-effective, sustainable, and have fewer negative effects on the soil and its inhabitants.</p>","PeriodicalId":9381,"journal":{"name":"Canadian journal of microbiology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142016458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lettuce seed pelleting with Pseudomonas sp. 31-12: plant growth promotion under laboratory and greenhouse conditions. 使用假单胞菌 31-12 对莴苣种子进行颗粒处理:在实验室和温室条件下促进植物生长。
IF 1.8 4区 生物学
Canadian journal of microbiology Pub Date : 2024-08-08 DOI: 10.1139/cjm-2024-0071
Jakkrapong Kangsopa, Russell K Hynes, Boonmee Siri
{"title":"Lettuce seed pelleting with <i>Pseudomonas</i> sp. 31-12: plant growth promotion under laboratory and greenhouse conditions.","authors":"Jakkrapong Kangsopa, Russell K Hynes, Boonmee Siri","doi":"10.1139/cjm-2024-0071","DOIUrl":"10.1139/cjm-2024-0071","url":null,"abstract":"<p><p>Plant growth promotion by <i>Pseudomonas</i> sp. 31-12 incorporated into a lettuce seed pelleting matrix was studied. We examined (1) the effect of five rhizosphere derived bacterial strains on green oak lettuce (<i>Lactuca sativa</i> L.) seed germination, root and shoot growth, as a strain selection step for seed coating and seed pelletizing studies, (2) population stability of <i>Pseudomonas</i> sp. 31-12 incorporated into a pelleting matrix on lettuce seed stored three months at 4 °C, and (3) lettuce growth promotion in the laboratory and greenhouse by <i>Pseudomonas</i> sp. 31-12 coated and pelletized seed. A spontaneous streptomycin mutant of <i>Pseudomonas</i> sp. 31-12 (str) was used to determine population size on seed and roots of 15- and 30-day-old lettuce. The population of <i>Pseudomonas</i> sp. 31-12str on coated and pelleted seed decreased from 10<sup>4</sup> cfu/seed to 10<sup>3</sup> cfu/seed after 3 months storage at 4 °C. However, the population exceeded 10<sup>4</sup> cfu/g root dry mass and 10<sup>5</sup>/g root dry mass after 15 days and 30 days in the greenhouse. Leaf fresh mass was significantly increased (<i>P</i> ≤ 0.05) with <i>Pseudomonas</i> sp. 31-12 seed treatment as compared to noninoculated seed. In conclusion, pelletized lettuce seed with <i>Pseudomonas</i> sp. 31-12 promoted growth and yield in the greenhouse.</p>","PeriodicalId":9381,"journal":{"name":"Canadian journal of microbiology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141905928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enterococci as a One Health indicator of antimicrobial resistance. 肠球菌是抗菌药耐药性的一种健康指标。
IF 1.8 4区 生物学
Canadian journal of microbiology Pub Date : 2024-08-01 Epub Date: 2024-05-02 DOI: 10.1139/cjm-2024-0024
Sani-E-Zehra Zaidi, Rahat Zaheer, Athanasios Zovoilis, Tim A McAllister
{"title":"Enterococci as a One Health indicator of antimicrobial resistance.","authors":"Sani-E-Zehra Zaidi, Rahat Zaheer, Athanasios Zovoilis, Tim A McAllister","doi":"10.1139/cjm-2024-0024","DOIUrl":"10.1139/cjm-2024-0024","url":null,"abstract":"<p><p>The rapid increase of antimicrobial-resistant bacteria in humans and livestock is concerning. Antimicrobials are essential for the treatment of disease in modern day medicine, and their misuse in humans and food animals has contributed to an increase in the prevalence of antimicrobial-resistant bacteria. Globally, antimicrobial resistance is recognized as a One Health problem affecting humans, animals, and environment. Enterococcal species are Gram-positive bacteria that are widely distributed in nature. Their occurrence, prevalence, and persistence across the One Health continuum make them an ideal candidate to study antimicrobial resistance from a One Health perspective. The objective of this review was to summarize the role of enterococci as an indicator of antimicrobial resistance across One Health sectors. We also briefly address the prevalence of enterococci in human, animal, and environmental settings. In addition, a 16S RNA gene-based phylogenetic tree was constructed to visualize the evolutionary relationship among enterococcal species and whether they segregate based on host environment. We also review the genomic basis of antimicrobial resistance in enterococcal species across the One Health continuum.</p>","PeriodicalId":9381,"journal":{"name":"Canadian journal of microbiology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140847169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identifying functional multi-host shuttle plasmids to advance synthetic biology applications in Mesorhizobium and Bradyrhizobium. 鉴定功能性多宿主穿梭质粒,推进中生代和子囊菌的合成生物学应用。
IF 1.8 4区 生物学
Canadian journal of microbiology Pub Date : 2024-08-01 Epub Date: 2024-04-02 DOI: 10.1139/cjm-2023-0232
Jordyn S Meaney, Aakanx K Panchal, Aiden J Wilcox, George C diCenzo, Bogumil J Karas
{"title":"Identifying functional multi-host shuttle plasmids to advance synthetic biology applications in <i>Mesorhizobium</i> and <i>Bradyrhizobium</i>.","authors":"Jordyn S Meaney, Aakanx K Panchal, Aiden J Wilcox, George C diCenzo, Bogumil J Karas","doi":"10.1139/cjm-2023-0232","DOIUrl":"10.1139/cjm-2023-0232","url":null,"abstract":"<p><p>Ammonia availability has a crucial role in agriculture as it ensures healthy plant growth and increased crop yields. Since diazotrophs are the only organisms capable of reducing dinitrogen to ammonia, they have great ecological importance and potential to mitigate the environmental and economic costs of synthetic fertilizer use. Rhizobia are especially valuable being that they can engage in nitrogen-fixing symbiotic relationships with legumes, and they demonstrate great diversity and plasticity in genomic and phenotypic traits. However, few rhizobial species have sufficient genetic tractability for synthetic biology applications. This study established a basic genetic toolbox with antibiotic resistance markers, multi-host shuttle plasmids and a streamlined protocol for biparental conjugation with <i>Mesorhizobium</i> and <i>Bradyrhizobium</i> species. We identified two <i>repABC</i> origins of replication from <i>Sinorhizobium meliloti</i> (pSymB) and <i>Rhizobium etli</i> (p42d) that were stable across all three strains of interest. Furthermore, the NZP2235 genome was sequenced and phylogenetic analysis determined its reclassification to <i>Mesorhizobium huakuii</i>. These tools will enable the use of plasmid-based strategies for more advanced genetic engineering projects and ultimately contribute towards the development of more sustainable agriculture practices by means of novel nitrogen-fixing organelles, elite bioinoculants, or symbiotic association with nonlegumes.</p>","PeriodicalId":9381,"journal":{"name":"Canadian journal of microbiology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140847517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co-inoculation with novel nodule-inhabiting bacteria reduces the benefits of legume-rhizobium symbiosis. 与新型结核栖息菌共同接种会降低豆科-根瘤菌共生的益处。
IF 1.8 4区 生物学
Canadian journal of microbiology Pub Date : 2024-07-01 Epub Date: 2024-03-20 DOI: 10.1139/cjm-2023-0209
James C Kosmopoulos, Rebecca T Batstone-Doyle, Katy D Heath
{"title":"Co-inoculation with novel nodule-inhabiting bacteria reduces the benefits of legume-rhizobium symbiosis.","authors":"James C Kosmopoulos, Rebecca T Batstone-Doyle, Katy D Heath","doi":"10.1139/cjm-2023-0209","DOIUrl":"10.1139/cjm-2023-0209","url":null,"abstract":"<p><p>The ecologically and economically vital symbiosis between nitrogen-fixing rhizobia and leguminous plants is often thought of as a bi-partite interaction, yet studies increasingly show the prevalence of non-rhizobial endophytes (NREs) that occupy nodules alongside rhizobia. Yet, what impact these NREs have on plant or rhizobium fitness remains unclear. Here, we investigated four NRE strains found to naturally co-occupy nodules of the legume <i>Medicago truncatula</i> alongside <i>Sinorhizobium meliloti</i> in native soils. Our objectives were to (1) examine the direct and indirect effects of NREs on <i>M. truncatula</i> and <i>S. meliloti</i> fitness, and (2) determine whether NREs can re-colonize root and nodule tissues upon reinoculation. We identified one NRE strain (522) as a novel <i>Paenibacillus</i> species, another strain (717A) as a novel <i>Bacillus</i> species, and the other two (702A and 733B) as novel <i>Pseudomonas</i> species. Additionally, we found that two NREs (Bacillus 717A and Pseudomonas 733B) reduced the fitness benefits obtained from symbiosis for both partners, while the other two (522, 702A) had little effect. Lastly, we found that NREs were able to co-infect host tissues alongside <i>S. meliloti</i>. This study demonstrates that variation of NREs present in natural populations must be considered to better understand legume-rhizobium dynamics in soil communities.</p>","PeriodicalId":9381,"journal":{"name":"Canadian journal of microbiology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140173779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Year-round monitoring of three water sources in Québec, Canada, reveals site-specific differences in conditions for Cryptosporidium and Giardia contamination. 对加拿大魁北克省三个水源地的全年监测显示,隐孢子虫和贾第鞭毛虫污染的条件因地而异。
IF 1.8 4区 生物学
Canadian journal of microbiology Pub Date : 2024-07-01 Epub Date: 2024-05-03 DOI: 10.1139/cjm-2023-0207
Marie-Stéphanie Fradette, Sandrinne L Bourque, Manuel J Rodriguez, Steve J Charette
{"title":"Year-round monitoring of three water sources in Québec, Canada, reveals site-specific differences in conditions for <i>Cryptosporidium</i> and <i>Giardia</i> contamination.","authors":"Marie-Stéphanie Fradette, Sandrinne L Bourque, Manuel J Rodriguez, Steve J Charette","doi":"10.1139/cjm-2023-0207","DOIUrl":"10.1139/cjm-2023-0207","url":null,"abstract":"<p><p><i>Cryptosporidium</i> and <i>Giardia</i> are protozoan parasites responsible for gastrointestinal illnesses in humans and in animal species. The main way these parasites are transmitted is by ingestion of their (oo)cysts in drinking water. Monitoring (oo)cysts in water sources is beneficial to evaluate the quality of raw water supplying treatment plants. Currently, the only standardized protocol to enumerate these parasites from water samples is United States Environmental Protection Agency (USEPA) Method 1623.1. With this method, we monitored three major water sources in Quebec over a year to assess temporal and geographical variations of these parasite (oo)cysts. These three water sources have independent watersheds despite being in the same region. We found a general pattern for <i>Giardia</i>, with high concentrations of cysts during cold and transition periods, and significantly lower concentrations during the warm period. <i>Cryptosporidium</i>'s concentration was more variable throughout the year. Statistical correlations (Pearson's correlation coefficients) were established between the concentration of each parasite and various environmental parameters. The three study sites each showed unique factors correlating with the presence of both protozoa, supporting the idea that each water source must be seen as a unique entity with its own particular characteristics and therefore, must be monitored independently. Although some environmental parameters could be interesting proxies to the parasitic load, no parameter was strongly correlated throughout the whole sampling year and none of the parameters could be used as a single proxy for all three studies sources.</p>","PeriodicalId":9381,"journal":{"name":"Canadian journal of microbiology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140847462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drug repositioning identifies histone deacetylase inhibitors that promote innate immunity in non-tuberculous mycobacterial infection. 药物重新定位发现组蛋白去乙酰化酶抑制剂可促进非结核分枝杆菌感染中的先天免疫。
IF 1.8 4区 生物学
Canadian journal of microbiology Pub Date : 2024-07-01 Epub Date: 2024-06-10 DOI: 10.1139/cjm-2023-0127
Adrián Rodriguez-Carlos, Anguita Raúl, Yolanda M Jacobo-Delgado, Carmen Judith Serrano, Alan Santos-Mena, Luis Adrian De Jesus-Gonzalez, Ester Boix, Bruno Rivas-Santiago
{"title":"Drug repositioning identifies histone deacetylase inhibitors that promote innate immunity in non-tuberculous mycobacterial infection.","authors":"Adrián Rodriguez-Carlos, Anguita Raúl, Yolanda M Jacobo-Delgado, Carmen Judith Serrano, Alan Santos-Mena, Luis Adrian De Jesus-Gonzalez, Ester Boix, Bruno Rivas-Santiago","doi":"10.1139/cjm-2023-0127","DOIUrl":"10.1139/cjm-2023-0127","url":null,"abstract":"<p><p>Non-tuberculosis infections in immunocompromised patients represent a cause for concern, given the increased risks of infection, and limited treatments available. Herein, we report that molecules for binding to the catalytic site of histone deacetylase (HDAC) inhibit its activity, thus increasing the innate immune response against environmental mycobacteria. The action of HDAC inhibitors (iHDACs) was explored in a model of type II pneumocytes and macrophages infection by <i>Mycobacterium aurum</i>. The results show that the use of 1,3-diphenylurea increases the expression of the TLR-4 in <i>M. aurum</i> infected MDMs, as well as the production of defb4, IL-1β, IL-12, and IL-6. Moreover, we observed that aminoacetanilide upregulates the expression of TLR-4 together with TLR-9, defb4, CAMP, RNase 6, RNase 7, IL-1β, IL-12, and IL-6 in T2P. Results conclude that the tested iHDACs selectively modulate the expression of cytokines and antimicrobial peptides that are associated with reduction of non-tuberculous mycobacteria infection.</p>","PeriodicalId":9381,"journal":{"name":"Canadian journal of microbiology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141295591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial communities change along the 300 km length of the Grand River for extreme high- and low-flow regimes. 大河沿岸 300 公里长的微生物群落在极端高流量和低流量情况下的变化。
IF 1.8 4区 生物学
Canadian journal of microbiology Pub Date : 2024-07-01 Epub Date: 2024-05-15 DOI: 10.1139/cjm-2023-0092
Taylor L Virgin, Prinpida Sonthiphand, Sara Coyotzi, Michael W Hall, Jason J Venkiteswaran, Richard J Elgood, Sherry L Schiff, Josh D Neufeld
{"title":"Microbial communities change along the 300 km length of the Grand River for extreme high- and low-flow regimes.","authors":"Taylor L Virgin, Prinpida Sonthiphand, Sara Coyotzi, Michael W Hall, Jason J Venkiteswaran, Richard J Elgood, Sherry L Schiff, Josh D Neufeld","doi":"10.1139/cjm-2023-0092","DOIUrl":"10.1139/cjm-2023-0092","url":null,"abstract":"<p><p>The Grand River watershed is the largest catchment in southern Ontario. The river's northern and southern sections are influenced by agriculture, whereas central regions receive wastewater effluent and urban runoff. To characterize in-river microbial communities, as they relate to spatial and environmental factors, we conducted two same-day sampling events along the entire 300 km length of the river, representing contrasting flow seasons (high flow spring melt and low flow end of summer). Through high-throughput sequencing of 16S rRNA genes, we assessed the relationship between river microbiota and spatial and physicochemical variables. Flow season had a greater impact on communities than spatial or diel effects and profiles diverged with distance between sites under both flow conditions, but low-flow profiles exhibited higher beta diversity. High-flow profiles showed greater species richness and increased presence of soil and sediment taxa, which may relate to increased input from terrestrial sources. Total suspended solids, dissolved inorganic carbon, and distance from headwaters significantly explained microbial community variation during the low-flow event, whereas conductivity, sulfate, and nitrite were significant explanatory factors for spring melt. This study establishes a baseline for the Grand River's microbial community, serving as a foundation for modeling the microbiology of anthropogenically impacted freshwater systems affected by lotic processes.</p>","PeriodicalId":9381,"journal":{"name":"Canadian journal of microbiology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140920959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of virulence mechanisms in plant-pathogenic Streptomyces. 植物致病链霉菌毒力机制的调控。
IF 1.8 4区 生物学
Canadian journal of microbiology Pub Date : 2024-06-01 Epub Date: 2024-01-08 DOI: 10.1139/cjm-2023-0171
Corrie V Vincent, Dawn R D Bignell
{"title":"Regulation of virulence mechanisms in plant-pathogenic <i>Streptomyces</i>.","authors":"Corrie V Vincent, Dawn R D Bignell","doi":"10.1139/cjm-2023-0171","DOIUrl":"10.1139/cjm-2023-0171","url":null,"abstract":"<p><p><i>Streptomyces</i> have a uniquely complex developmental life cycle that involves the coordination of morphological differentiation with the production of numerous bioactive specialized metabolites. The majority of <i>Streptomyces</i> spp. are soil-dwelling saprophytes, while plant pathogenicity is a rare attribute among members of this genus<i>.</i> Phytopathogenic <i>Streptomyces</i> are responsible for economically important diseases such as common scab, which affects potato and other root crops. Following the acquisition of genes encoding virulence factors, <i>Streptomyces</i> pathogens are expected to have specifically adapted their regulatory pathways to enable transition from a primarily saprophytic to a pathogenic lifestyle. Investigations of the regulation of pathogenesis have primarily focused on <i>Streptomyces scabiei</i> and the principal pathogenicity determinant thaxtomin A. The coordination of growth and thaxtomin A production in this species is controlled in a hierarchical manner by cluster-situated regulators, pleiotropic regulators, signalling and plant-derived molecules, and nutrients. Although the majority of phytopathogenic <i>Streptomyces</i> produce thaxtomins, many also produce additional virulence factors, and there are scab-causing pathogens that do not produce thaxtomins. The development of effective control strategies for common scab and other <i>Streptomyces</i> plant diseases requires a more in-depth understanding of the genetic and environmental factors that modulate the plant pathogenic lifestyle of these organisms.</p>","PeriodicalId":9381,"journal":{"name":"Canadian journal of microbiology","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139401998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High diversity within and low but significant genetic differentiation among geographic and temporal populations of the global Streptococcus pneumoniae. 全球肺炎链球菌地理和时间种群内部的多样性很高,而种群之间的遗传分化较低但很明显。
IF 2.8 4区 生物学
Canadian journal of microbiology Pub Date : 2024-06-01 Epub Date: 2024-02-29 DOI: 10.1139/cjm-2023-0155
Jezreel Dalmieda, Megan Hitchcock, Jianping Xu
{"title":"High diversity within and low but significant genetic differentiation among geographic and temporal populations of the global <i>Streptococcus pneumoniae</i>.","authors":"Jezreel Dalmieda, Megan Hitchcock, Jianping Xu","doi":"10.1139/cjm-2023-0155","DOIUrl":"10.1139/cjm-2023-0155","url":null,"abstract":"<p><p><i>Streptococcus pneumoniae</i> is the major cause of invasive pneumococcal disease. However, the global population structure remains largely unexplored. In this study, we investigated the spatial and temporal patterns of genetic variation of <i>S</i>. <i>pneumoniae</i> based on archived multilocus sequence typing data from PubMLST.org. Our analyses demonstrated both shared and unique distributions of sequence types (STs) and allele types among regional populations. Among the 17 915 global STs, 36 representing 15 263 isolates were broadly shared among all six continents, consistent with recent clonal dispersal and expansion of this pathogen. The analysis of molecular variance revealed that >96% genetic variations were found within individual regional populations. However, though low (<4%), statistically significant genetic differentiation among regional populations was observed. Comparisons between non-clone-corrected and clone-corrected datasets showed that localized clonal expansion contributed significantly to the observed genetic differentiations among regions. Temporal analyses of the isolates showed that implementation of pneumococcal conjugate vaccine impacted the distributions of STs, but the effect on population structure was relatively limited. Linkage disequilibrium analyses identified evidence for recombination in all continental populations; however, the inferred recombination was not random. We discussed the limitations and implications of our analyses to the global epidemiology and future vaccine developments for <i>S</i>. <i>pneumoniae.</i></p>","PeriodicalId":9381,"journal":{"name":"Canadian journal of microbiology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139995691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信