Samantha Jane Tanlimco Loutet, Alia Sanger, Kallie Strong, Eric Collins, Nagissa Mahmoudi
{"title":"Microbial communities in Hudson Strait amidst rapid environmental changes.","authors":"Samantha Jane Tanlimco Loutet, Alia Sanger, Kallie Strong, Eric Collins, Nagissa Mahmoudi","doi":"10.1139/cjm-2024-0154","DOIUrl":null,"url":null,"abstract":"<p><p>Climate change is rapidly altering Arctic marine environments, leading to warmer waters, increased river discharge, and accelerated sea ice melt. The Hudson Bay Marine System (HBMS) experiences the fastest rate of sea ice loss in the Canadian North resulting in a prolonged open water season during the summer months. We examined microbial communities in the Hudson Strait using high throughput 16s rRNA gene sequencing during the peak of summer, in which the bay was almost completely ice-free, and air temperatures were high. We found that salinity and temperature significantly affected the taxonomic composition among microbial communities across sites. We observed a higher relative abundance of specific Polaribacter sp. ASVs at more saline sites. Shannon diversity was not significantly impacted by salinity or temperature. These results contribute to our understanding of surface water microbial community composition in the Hudson Strait and shed light on how future salinity and temperature conditions may favour certain microbial populations.</p>","PeriodicalId":9381,"journal":{"name":"Canadian journal of microbiology","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian journal of microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/cjm-2024-0154","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Climate change is rapidly altering Arctic marine environments, leading to warmer waters, increased river discharge, and accelerated sea ice melt. The Hudson Bay Marine System (HBMS) experiences the fastest rate of sea ice loss in the Canadian North resulting in a prolonged open water season during the summer months. We examined microbial communities in the Hudson Strait using high throughput 16s rRNA gene sequencing during the peak of summer, in which the bay was almost completely ice-free, and air temperatures were high. We found that salinity and temperature significantly affected the taxonomic composition among microbial communities across sites. We observed a higher relative abundance of specific Polaribacter sp. ASVs at more saline sites. Shannon diversity was not significantly impacted by salinity or temperature. These results contribute to our understanding of surface water microbial community composition in the Hudson Strait and shed light on how future salinity and temperature conditions may favour certain microbial populations.
期刊介绍:
Published since 1954, the Canadian Journal of Microbiology is a monthly journal that contains new research in the field of microbiology, including applied microbiology and biotechnology; microbial structure and function; fungi and other eucaryotic protists; infection and immunity; microbial ecology; physiology, metabolism and enzymology; and virology, genetics, and molecular biology. It also publishes review articles and notes on an occasional basis, contributed by recognized scientists worldwide.