{"title":"Multi-layer Bundling as a New Approach for Determining Multi-scale Correlations Within a High-Dimensional Dataset.","authors":"Mehran Fazli, Richard Bertram, Deborah A Striegel","doi":"10.1007/s11538-024-01335-8","DOIUrl":"10.1007/s11538-024-01335-8","url":null,"abstract":"<p><p>The growing complexity of biological data has spurred the development of innovative computational techniques to extract meaningful information and uncover hidden patterns within vast datasets. Biological networks, such as gene regulatory networks and protein-protein interaction networks, hold critical insights into biological features' connections and functions. Integrating and analyzing high-dimensional data, particularly in gene expression studies, stands prominent among the challenges in deciphering these networks. Clustering methods play a crucial role in addressing these challenges, with spectral clustering emerging as a potent unsupervised technique considering intrinsic geometric structures. However, spectral clustering's user-defined cluster number can lead to inconsistent and sometimes orthogonal clustering regimes. We propose the Multi-layer Bundling (MLB) method to address this limitation, combining multiple prominent clustering regimes to offer a comprehensive data view. We call the outcome clusters \"bundles\". This approach refines clustering outcomes, unravels hierarchical organization, and identifies bridge elements mediating communication between network components. By layering clustering results, MLB provides a global-to-local view of biological feature clusters enabling insights into intricate biological systems. Furthermore, the method enhances bundle network predictions by integrating the bundle co-cluster matrix with the affinity matrix. The versatility of MLB extends beyond biological networks, making it applicable to various domains where understanding complex relationships and patterns is needed.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11245441/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141589644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Phylogenetic Diversity Indices from an Affine and Projective Viewpoint.","authors":"V Moulton, A Spillner, K Wicke","doi":"10.1007/s11538-024-01332-x","DOIUrl":"10.1007/s11538-024-01332-x","url":null,"abstract":"<p><p>Phylogenetic diversity indices are commonly used to rank the elements in a collection of species or populations for conservation purposes. The derivation of these indices is typically based on some quantitative description of the evolutionary history of the species in question, which is often given in terms of a phylogenetic tree. Both rooted and unrooted phylogenetic trees can be employed, and there are close connections between the indices that are derived in these two different ways. In this paper, we introduce more general phylogenetic diversity indices that can be derived from collections of subsets (clusters) and collections of bipartitions (splits) of the given set of species. Such indices could be useful, for example, in case there is some uncertainty in the topology of the tree being used to derive a phylogenetic diversity index. As well as characterizing some of the indices that we introduce in terms of their special properties, we provide a link between cluster-based and split-based phylogenetic diversity indices that uses a discrete analogue of the classical link between affine and projective geometry. This provides a unified framework for many of the various phylogenetic diversity indices used in the literature based on rooted and unrooted phylogenetic trees, generalizations and new proofs for previous results concerning tree-based indices, and a way to define some new phylogenetic diversity indices that naturally arise as affine or projective variants of each other or as generalizations of tree-based indices.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11233365/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141558122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Keith L Chambers, Michael G Watson, Mary R Myerscough
{"title":"A Lipid-Structured Model of Atherosclerosis with Macrophage Proliferation.","authors":"Keith L Chambers, Michael G Watson, Mary R Myerscough","doi":"10.1007/s11538-024-01333-w","DOIUrl":"10.1007/s11538-024-01333-w","url":null,"abstract":"<p><p>Atherosclerotic plaques are fatty deposits that form in the walls of major arteries and are one of the major causes of heart attacks and strokes. Macrophages are the main immune cells in plaques and macrophage dynamics influence whether plaques grow or regress. Macrophage proliferation is a key process in atherosclerosis, particularly in the development of mid-stage plaques, but very few mathematical models include proliferation. In this paper we reframe the lipid-structured model of Ford et al. (J Theor Biol 479:48-63, 2019. https://doi.org/10.1016/j.jtbi.2019.07.003 ) to account for macrophage proliferation. Proliferation is modelled as a non-local decrease in the lipid structural variable. Steady state analysis indicates that proliferation assists in reducing eventual necrotic core lipid content and spreads the lipid load of the macrophage population amongst the cells. The contribution of plaque macrophages from proliferation relative to recruitment from the bloodstream is also examined. The model suggests that a more proliferative plaque differs from an equivalent (defined as having the same lipid content and cell numbers) recruitment-dominant plaque in the way lipid is distributed amongst the macrophages. The macrophage lipid distribution of an equivalent proliferation-dominant plaque is less skewed and exhibits a local maximum near the endogenous lipid content.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11233351/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141558121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jimmy Calvo-Monge, Jorge Arroyo-Esquivel, Alyssa Gehman, Fabio Sanchez
{"title":"Source-Sink Dynamics in a Two-Patch SI Epidemic Model with Life Stages and No Recovery from Infection.","authors":"Jimmy Calvo-Monge, Jorge Arroyo-Esquivel, Alyssa Gehman, Fabio Sanchez","doi":"10.1007/s11538-024-01328-7","DOIUrl":"10.1007/s11538-024-01328-7","url":null,"abstract":"<p><p>This study presents a comprehensive analysis of a two-patch, two-life stage SI model without recovery from infection, focusing on the dynamics of disease spread and host population viability in natural populations. The model, inspired by real-world ecological crises like the decline of amphibian populations due to chytridiomycosis and sea star populations due to Sea Star Wasting Disease, aims to understand the conditions under which a sink host population can present ecological rescue from a healthier, source population. Mathematical and numerical analyses reveal the critical roles of the basic reproductive numbers of the source and sink populations, the maturation rate, and the dispersal rate of juveniles in determining population outcomes. The study identifies basic reproduction numbers <math><msub><mi>R</mi> <mn>0</mn></msub> </math> for each of the patches, and conditions for the basic reproduction numbers to produce a receiving patch under which its population. These findings provide insights into managing natural populations affected by disease, with implications for conservation strategies, such as the importance of maintaining reproductively viable refuge populations and considering the effects of dispersal and maturation rates on population recovery. The research underscores the complexity of host-pathogen dynamics in spatially structured environments and highlights the need for multi-faceted approaches to biodiversity conservation in the face of emerging diseases.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141554208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Diffusion-Based Approach for Simulating Forward-in-Time State-Dependent Speciation and Extinction Dynamics.","authors":"Albert C Soewongsono, Michael J Landis","doi":"10.1007/s11538-024-01337-6","DOIUrl":"10.1007/s11538-024-01337-6","url":null,"abstract":"<p><p>We establish a general framework using a diffusion approximation to simulate forward-in-time state counts or frequencies for cladogenetic state-dependent speciation-extinction (ClaSSE) models. We apply the framework to various two- and three-region geographic-state speciation-extinction (GeoSSE) models. We show that the species range state dynamics simulated under tree-based and diffusion-based processes are comparable. We derive a method to infer rate parameters that are compatible with given observed stationary state frequencies and obtain an analytical result to compute stationary state frequencies for a given set of rate parameters. We also describe a procedure to find the time to reach the stationary frequencies of a ClaSSE model using our diffusion-based approach, which we demonstrate using a worked example for a two-region GeoSSE model. Finally, we discuss how the diffusion framework can be applied to formalize relationships between evolutionary patterns and processes under state-dependent diversification scenarios.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141544543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Priyan Bhattacharya, Karthik Raman, Arun K Tangirala
{"title":"Design Principles for Perfect Adaptation in Biological Networks with Nonlinear Dynamics.","authors":"Priyan Bhattacharya, Karthik Raman, Arun K Tangirala","doi":"10.1007/s11538-024-01318-9","DOIUrl":"10.1007/s11538-024-01318-9","url":null,"abstract":"<p><p>Establishing a mapping between the emergent biological properties and the repository of network structures has been of great relevance in systems and synthetic biology. Adaptation is one such biological property of paramount importance that promotes regulation in the presence of environmental disturbances. This paper presents a nonlinear systems theory-driven framework to identify the design principles for perfect adaptation with respect to external disturbances of arbitrary magnitude. Based on the prior information about the network, we frame precise mathematical conditions for adaptation using nonlinear systems theory. We first deduce the mathematical conditions for perfect adaptation for constant input disturbances. Subsequently, we translate these conditions to specific necessary structural requirements for adaptation in networks of small size and then extend to argue that there exist only two classes of architectures for a network of any size that can provide local adaptation in the entire state space, namely, incoherent feed-forward (IFF) structure and negative feedback loop with buffer node (NFB). The additional positiveness constraints further narrow the admissible set of network structures. This also aids in establishing the global asymptotic stability for the steady state given a constant input disturbance. The proposed method does not assume any explicit knowledge of the underlying rate kinetics, barring some minimal assumptions. Finally, we also discuss the infeasibility of certain IFF networks in providing adaptation in the presence of downstream connections. Moreover, we propose a generic and novel algorithm based on non-linear systems theory to unravel the design principles for global adaptation. Detailed and extensive simulation studies corroborate the theoretical findings.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141490958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Georgios Aliatimis, Ruriko Yoshida, Burak Boyacı, James A Grant
{"title":"Tropical Logistic Regression Model on Space of Phylogenetic Trees.","authors":"Georgios Aliatimis, Ruriko Yoshida, Burak Boyacı, James A Grant","doi":"10.1007/s11538-024-01327-8","DOIUrl":"10.1007/s11538-024-01327-8","url":null,"abstract":"<p><p>Classification of gene trees is an important task both in the analysis of multi-locus phylogenetic data, and assessment of the convergence of Markov Chain Monte Carlo (MCMC) analyses used in Bayesian phylogenetic tree reconstruction. The logistic regression model is one of the most popular classification models in statistical learning, thanks to its computational speed and interpretability. However, it is not appropriate to directly apply the standard logistic regression model to a set of phylogenetic trees, as the space of phylogenetic trees is non-Euclidean and thus contradicts the standard assumptions on covariates. It is well-known in tropical geometry and phylogenetics that the space of phylogenetic trees is a tropical linear space in terms of the max-plus algebra. Therefore, in this paper, we propose an analogue approach of the logistic regression model in the setting of tropical geometry. Our proposed method outperforms classical logistic regression in terms of Area under the ROC Curve in numerical examples, including with data generated by the multi-species coalescent model. Theoretical properties such as statistical consistency have been proved and generalization error rates have been derived. Finally, our classification algorithm is proposed as an MCMC convergence criterion for Mr Bayes. Unlike the convergence metric used by Mr Bayes which is only dependent on tree topologies, our method is sensitive to branch lengths and therefore provides a more robust metric for convergence. In a test case, it is illustrated that the tropical logistic regression can differentiate between two independently run MCMC chains, even when the standard metric cannot.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11219468/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141490959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joseph A Landsittel, G Bard Ermentrout, Klaus M Stiefel
{"title":"A Theoretical Comparison of Alternative Male Mating Strategies in Cephalopods and Fishes.","authors":"Joseph A Landsittel, G Bard Ermentrout, Klaus M Stiefel","doi":"10.1007/s11538-024-01330-z","DOIUrl":"10.1007/s11538-024-01330-z","url":null,"abstract":"<p><p>We used computer simulations of growth, mating and death of cephalopods and fishes to explore the effect of different life-history strategies on the relative prevalence of alternative male mating strategies. Specifically, we investigated the consequences of single or multiple matings per lifetime, mating strategy switching, cannibalism, resource stochasticity, and altruism towards relatives. We found that a combination of single (semelparous) matings, cannibalism and an absence of mating strategy changes in one lifetime led to a more strictly partitioned parameter space, with a reduced region where the two mating strategies co-exist in similar numbers. Explicitly including Hamilton's rule in simulations of the social system of a Cichlid led to an increase of dominant males, at the expense of both sneakers and dwarf males (\"super-sneakers\"). Our predictions provide general bounds on the viable ratios of alternative male mating strategies with different life-histories, and under possibly rapidly changing ecological situations.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141466352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Miguel Ballesteros, Carlos Díaz-Avalos, Omar Hernández, Guillermo Garro
{"title":"A New Method for Low Density Distribution Modeling and Near Threatened Species: The Study Case of Plectrohyla Guatemalensis.","authors":"Miguel Ballesteros, Carlos Díaz-Avalos, Omar Hernández, Guillermo Garro","doi":"10.1007/s11538-024-01315-y","DOIUrl":"10.1007/s11538-024-01315-y","url":null,"abstract":"<p><p>We introduce a model that can be used for the description of the distribution of species when there is scarcity of data, based on our previous work (Ballesteros et al. J Math Biol 85(4):31, 2022). We address challenges in modeling species that are seldom observed in nature, for example species included in The International Union for Conservation of Nature's Red List of Threatened Species (IUCN 2023). We introduce a general method and test it using a case study of a near threatened species of amphibians called Plectrohyla Guatemalensis (see IUCN 2023) in a region of the UNESCO natural reserve \"Tacaná Volcano\", in the border between Mexico and Guatemala. Since threatened species are difficult to find in nature, collected data can be extremely reduced. This produces a mathematical problem in the sense that the usual modeling in terms of Markov random fields representing individuals associated to locations in a grid generates artificial clusters around the observations, which are unreasonable. We propose a different approach in which our random variables describe yearly averages of expectation values of the number of individuals instead of individuals (and they take values on a compact interval). Our approach takes advantage of intuitive insights from environmental properties: in nature individuals are attracted or repulsed by specific features (Ballesteros et al. J Math Biol 85(4):31, 2022). Drawing inspiration from quantum mechanics, we incorporate quantum Hamiltonians into classical statistical mechanics (i.e. Gibbs measures or Markov random fields). The equilibrium between spreading and attractive/repulsive forces governs the behavior of the species, expressed through a global control problem involving an energy operator.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141455421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tharana Yosprakob, Alexandra Shyntar, Diepiriye G Iworima, Leah Edelstein-Keshet
{"title":"Modeling the Growth and Size Distribution of Human Pluripotent Stem Cell Clusters in Culture.","authors":"Tharana Yosprakob, Alexandra Shyntar, Diepiriye G Iworima, Leah Edelstein-Keshet","doi":"10.1007/s11538-024-01325-w","DOIUrl":"10.1007/s11538-024-01325-w","url":null,"abstract":"<p><p>Human pluripotent stem cells (hPSCs) hold promise for regenerative medicine to replace essential cells that die or become dysfunctional. In some cases, these cells can be used to form clusters whose size distribution affects the growth dynamics. We develop models to predict cluster size distributions of hPSCs based on several plausible hypotheses, including (0) exponential growth, (1) surface growth, (2) Logistic growth, and (3) Gompertz growth. We use experimental data to investigate these models. A partial differential equation for the dynamics of the cluster size distribution is used to fit parameters (rates of growth, mortality, etc.). A comparison of the models using their mean squared error and the Akaike Information criterion suggests that Models 1 (surface growth) or 2 (Logistic growth) best describe the data.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141445617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}