Ariane Ernst, Anastasia Bankowski, Meida Jusyte, Toluwani Okunola, Tino Petrov, Alexander M Walter, Stefanie Winkelmann
{"title":"Parameter Optimization for a Neurotransmission Recovery Model.","authors":"Ariane Ernst, Anastasia Bankowski, Meida Jusyte, Toluwani Okunola, Tino Petrov, Alexander M Walter, Stefanie Winkelmann","doi":"10.1007/s11538-025-01486-2","DOIUrl":null,"url":null,"abstract":"<p><p>We assess the empirical applicability of a simplified model for neurotransmitter release that incorporates maturation, fusion, and recovery of both release sites and vesicles. Model parameters are optimized by fitting the model to experimental data obtained from neuromuscular junction synapses of 3rd-instar Drosophila melanogaster larvae. In particular, the mean-squared error between the local extrema of the simulated total junction current and its experimental counterpart is minimized. We compare three estimation approaches, differing in the choice of optimized parameters and the fusion rate function. Despite the model's minimalistic structure, it demonstrates a compelling ability to replicate experimental data, yielding plausible parameter estimates for five different animals. An additional identifiability analysis based on the profile likelihood reveals practical non-identifiabilities for several parameters, highlighting the need for additional constraints or data to improve estimation accuracy.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"87 8","pages":"109"},"PeriodicalIF":2.0000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-025-01486-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We assess the empirical applicability of a simplified model for neurotransmitter release that incorporates maturation, fusion, and recovery of both release sites and vesicles. Model parameters are optimized by fitting the model to experimental data obtained from neuromuscular junction synapses of 3rd-instar Drosophila melanogaster larvae. In particular, the mean-squared error between the local extrema of the simulated total junction current and its experimental counterpart is minimized. We compare three estimation approaches, differing in the choice of optimized parameters and the fusion rate function. Despite the model's minimalistic structure, it demonstrates a compelling ability to replicate experimental data, yielding plausible parameter estimates for five different animals. An additional identifiability analysis based on the profile likelihood reveals practical non-identifiabilities for several parameters, highlighting the need for additional constraints or data to improve estimation accuracy.
期刊介绍:
The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including:
Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations
Research in mathematical biology education
Reviews
Commentaries
Perspectives, and contributions that discuss issues important to the profession
All contributions are peer-reviewed.