Paco Castaneda Ruan, J Cory Benson, Mohamed Trebak, Vivien Kirk, James Sneyd
{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\">A Model for the Coexistence of Competing Mechanisms for <ns0:math><ns0:msup><ns0:mtext>Ca</ns0:mtext> <ns0:mrow><ns0:mtext>2</ns0:mtext> <ns0:mo>+</ns0:mo></ns0:mrow> </ns0:msup> </ns0:math> Oscillations in T-lymphocytes.","authors":"Paco Castaneda Ruan, J Cory Benson, Mohamed Trebak, Vivien Kirk, James Sneyd","doi":"10.1007/s11538-024-01317-w","DOIUrl":"10.1007/s11538-024-01317-w","url":null,"abstract":"<p><p><math><msup><mtext>Ca</mtext> <mrow><mtext>2</mtext> <mo>+</mo></mrow> </msup> </math> is a ubiquitous signaling mechanism across different cell types. In T-cells, it is associated with cytokine production and immune function. Benson et al. have shown the coexistence of competing <math><msup><mtext>Ca</mtext> <mrow><mtext>2</mtext> <mo>+</mo></mrow> </msup> </math> oscillations during antigen stimulation of T-cell receptors, depending on the presence of extracellular <math><msup><mtext>Ca</mtext> <mrow><mtext>2</mtext> <mo>+</mo></mrow> </msup> </math> influx through the <math><msup><mtext>Ca</mtext> <mrow><mtext>2</mtext> <mo>+</mo></mrow> </msup> </math> release-activated <math><msup><mtext>Ca</mtext> <mrow><mtext>2</mtext> <mo>+</mo></mrow> </msup> </math> channel (Benson in J Biol Chem 29:105310, 2023). In this paper, we construct a mathematical model consisting of five ordinary differential equations and analyze the relationship between the competing oscillatory mechanisms.. We perform bifurcation analysis on two versions of our model, corresponding to the two oscillatory types, to find the defining characteristics of these two families.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"86 7","pages":"86"},"PeriodicalIF":2.0,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11176111/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141310112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Measles Infection Dose Responses: Insights from Mathematical Modeling.","authors":"Anet J N Anelone, Hannah E Clapham","doi":"10.1007/s11538-024-01305-0","DOIUrl":"10.1007/s11538-024-01305-0","url":null,"abstract":"<p><p>How viral infections develop can change based on the number of viruses initially entering the body. The understanding of the impacts of infection doses remains incomplete, in part due to challenging constraints, and a lack of research. Gaining more insights is crucial regarding the measles virus (MV). The higher the MV infection dose, the earlier the peak of acute viremia, but the magnitude of the peak viremia remains almost constant. Measles is highly contagious, causes immunosuppression such as lymphopenia, and contributes substantially to childhood morbidity and mortality. This work investigated mechanisms underlying the observed wild-type measles infection dose responses in cynomolgus monkeys. We fitted longitudinal data on viremia using maximum likelihood estimation, and used the Akaike Information Criterion (AIC) to evaluate relevant biological hypotheses and their respective model parameterizations. The lowest AIC indicates a linear relationship between the infection dose, the initial viral load, and the initial number of activated MV-specific T cells. Early peak viremia is associated with high initial number of activated MV-specific T cells. Thus, when MV infection dose increases, the initial viremia and associated immune cell stimulation increase, and reduce the time it takes for T cell killing to be sufficient, thereby allowing dose-independent peaks for viremia, MV-specific T cells, and lymphocyte depletion. Together, these results suggest that the development of measles depends on virus-host interactions at the start and the efficiency of viral control by cellular immunity. These relationships are additional motivations for prevention, vaccination, and early treatment for measles.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"86 7","pages":"85"},"PeriodicalIF":2.0,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11162976/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141295590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evolutionary Game Dynamics with Environmental Feedback in a Network with Two Communities.","authors":"Katherine Betz, Feng Fu, Naoki Masuda","doi":"10.1007/s11538-024-01310-3","DOIUrl":"10.1007/s11538-024-01310-3","url":null,"abstract":"<p><p>Recent developments of eco-evolutionary models have shown that evolving feedbacks between behavioral strategies and the environment of game interactions, leading to changes in the underlying payoff matrix, can impact the underlying population dynamics in various manners. We propose and analyze an eco-evolutionary game dynamics model on a network with two communities such that players interact with other players in the same community and those in the opposite community at different rates. In our model, we consider two-person matrix games with pairwise interactions occurring on individual edges and assume that the environmental state depends on edges rather than on nodes or being globally shared in the population. We analytically determine the equilibria and their stability under a symmetric population structure assumption, and we also numerically study the replicator dynamics of the general model. The model shows rich dynamical behavior, such as multiple transcritical bifurcations, multistability, and anti-synchronous oscillations. Our work offers insights into understanding how the presence of community structure impacts the eco-evolutionary dynamics within and between niches.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"86 7","pages":"84"},"PeriodicalIF":2.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11161456/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141283055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Computational Framework for the Administration of 5-Aminovulinic Acid Before Glioblastoma Surgery.","authors":"Jia Zeng, Nicholas J Moore","doi":"10.1007/s11538-024-01312-1","DOIUrl":"10.1007/s11538-024-01312-1","url":null,"abstract":"<p><p>5-Aminolevulinic Acid (5-ALA) is the only fluorophore approved by the FDA as an intraoperative optical imaging agent for fluorescence-guided surgery in patients with glioblastoma. The dosing regimen is based on rodent tests where a maximum signal occurs around 6 h after drug administration. Here, we construct a computational framework to simulate the transport of 5-ALA through the stomach, blood, and brain, and the subsequent conversion to the fluorescent agent protoporphyrin IX at the tumor site. The framework combines compartmental models with spatially-resolved partial differential equations, enabling one to address questions regarding quantity and timing of 5-ALA administration before surgery. Numerical tests in two spatial dimensions indicate that, for tumors exceeding the detection threshold, the time to peak fluorescent concentration is 2-7 h, broadly consistent with the current surgical guidelines. Moreover, the framework enables one to examine the specific effects of tumor size and location on the required dose and timing of 5-ALA administration before glioblastoma surgery.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"86 7","pages":"83"},"PeriodicalIF":2.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141261105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elliot M Miller, Tat Chung D Chan, Carlos Montes-Matamoros, Omar Sharif, Laurent Pujo-Menjouet, Michael R Lindstrom
{"title":"Oscillations in Neuronal Activity: A Neuron-Centered Spatiotemporal Model of the Unfolded Protein Response in Prion Diseases.","authors":"Elliot M Miller, Tat Chung D Chan, Carlos Montes-Matamoros, Omar Sharif, Laurent Pujo-Menjouet, Michael R Lindstrom","doi":"10.1007/s11538-024-01307-y","DOIUrl":"10.1007/s11538-024-01307-y","url":null,"abstract":"<p><p>Many neurodegenerative diseases (NDs) are characterized by the slow spatial spread of toxic protein species in the brain. The toxic proteins can induce neuronal stress, triggering the Unfolded Protein Response (UPR), which slows or stops protein translation and can indirectly reduce the toxic load. However, the UPR may also trigger processes leading to apoptotic cell death and the UPR is implicated in the progression of several NDs. In this paper, we develop a novel mathematical model to describe the spatiotemporal dynamics of the UPR mechanism for prion diseases. Our model is centered around a single neuron, with representative proteins P (healthy) and S (toxic) interacting with heterodimer dynamics (S interacts with P to form two S's). The model takes the form of a coupled system of nonlinear reaction-diffusion equations with a delayed, nonlinear flux for P (delay from the UPR). Through the delay, we find parameter regimes that exhibit oscillations in the P- and S-protein levels. We find that oscillations are more pronounced when the S-clearance rate and S-diffusivity are small in comparison to the P-clearance rate and P-diffusivity, respectively. The oscillations become more pronounced as delays in initiating the UPR increase. We also consider quasi-realistic clinical parameters to understand how possible drug therapies can alter the course of a prion disease. We find that decreasing the production of P, decreasing the recruitment rate, increasing the diffusivity of S, increasing the UPR S-threshold, and increasing the S clearance rate appear to be the most powerful modifications to reduce the mean UPR intensity and potentially moderate the disease progression.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"86 7","pages":"82"},"PeriodicalIF":2.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141247460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Coupled Statistical and Deterministic Model for Forecasting Climate-Driven Dengue Incidence in Selangor, Malaysia.","authors":"Xinyi Lu, Su Yean Teh, Hock Lye Koh, Pei Shan Fam, Chai Jian Tay","doi":"10.1007/s11538-024-01303-2","DOIUrl":"10.1007/s11538-024-01303-2","url":null,"abstract":"<p><p>The mosquito-borne dengue virus remains a major public health concern in Malaysia. Despite various control efforts and measures introduced by the Malaysian Government to combat dengue, the increasing trend of dengue cases persists and shows no sign of decreasing. Currently, early detection and vector control are the main methods employed to curb dengue outbreaks. In this study, a coupled model consisting of the statistical ARIMAX model and the deterministic SI-SIR model was developed and validated using the weekly reported dengue data from year 2014 to 2019 for Selangor, Malaysia. Previous studies have shown that climate variables, especially temperature, humidity, and precipitation, were able to influence dengue incidence and transmission dynamics through their effect on the vector. In this coupled model, climate is linked to dengue disease through mosquito biting rate, allowing real-time forecast of dengue cases using climate variables, namely temperature, rainfall and humidity. For the period chosen for model validation, the coupled model can forecast 1-2 weeks in advance with an average error of less than 6%, three weeks in advance with an average error of 7.06% and four weeks in advance with an average error of 8.01%. Further model simulation analysis suggests that the coupled model generally provides better forecast than the stand-alone ARIMAX model, especially at the onset of the outbreak. Moreover, the coupled model is more robust in the sense that it can be further adapted for investigating the effectiveness of various dengue mitigation measures subject to the changing climate.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"86 7","pages":"81"},"PeriodicalIF":2.0,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141157600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Making Predictions Using Poorly Identified Mathematical Models.","authors":"Matthew J Simpson, Oliver J Maclaren","doi":"10.1007/s11538-024-01294-0","DOIUrl":"10.1007/s11538-024-01294-0","url":null,"abstract":"<p><p>Many commonly used mathematical models in the field of mathematical biology involve challenges of parameter non-identifiability. Practical non-identifiability, where the quality and quantity of data does not provide sufficiently precise parameter estimates is often encountered, even with relatively simple models. In particular, the situation where some parameters are identifiable and others are not is often encountered. In this work we apply a recent likelihood-based workflow, called Profile-Wise Analysis (PWA), to non-identifiable models for the first time. The PWA workflow addresses identifiability, parameter estimation, and prediction in a unified framework that is simple to implement and interpret. Previous implementations of the workflow have dealt with idealised identifiable problems only. In this study we illustrate how the PWA workflow can be applied to both structurally non-identifiable and practically non-identifiable models in the context of simple population growth models. Dealing with simple mathematical models allows us to present the PWA workflow in a didactic, self-contained document that can be studied together with relatively straightforward Julia code provided on GitHub . Working with simple mathematical models allows the PWA workflow prediction intervals to be compared with gold standard full likelihood prediction intervals. Together, our examples illustrate how the PWA workflow provides us with a systematic way of dealing with non-identifiability, especially compared to other approaches, such as seeking ad hoc parameter combinations, or simply setting parameter values to some arbitrary default value. Importantly, we show that the PWA workflow provides insight into the commonly-encountered situation where some parameters are identifiable and others are not, allowing us to explore how uncertainty in some parameters, and combinations of parameters, regardless of their identifiability status, influences model predictions in a way that is insightful and interpretable.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"86 7","pages":"80"},"PeriodicalIF":2.0,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11129983/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141154463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transient Propagation of the Invasion Front in the Homogeneous Landscape and in the Presence of a Road.","authors":"Bradly Deeley, Natalia Petrovskaya","doi":"10.1007/s11538-024-01302-3","DOIUrl":"10.1007/s11538-024-01302-3","url":null,"abstract":"<p><p>Understanding the propagation of invasive plants at the beginning of invasive spread is important as it can help practitioners eradicate harmful species more efficiently. In our work the propagation regime of the invasive plant species is studied at the short-time scale before a travelling wave is established and advances into space at a constant speed. The integro-difference framework has been employed to deal with a stage-structured population, and a short-distance dispersal mode has been considered in the homogeneous environment and when a road presents in the landscape. It is explained in the paper how nonlinear spatio-temporal dynamics arise in a transient regime where the propagation speed depends on the detection threshold population density. Furthermore, we investigate the question of whether the transient dynamics become different when the homogeneous landscape is transformed into the heterogeneous one. It is shown in the paper how invasion slows down in a transient regime in the presence of a road.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"86 7","pages":"78"},"PeriodicalIF":2.0,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11111553/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141080741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Manu Aggarwal, Owen Lewis, Angela Jarrett, M Y Hussaini, N G Cogan
{"title":"A Model of Gastric Mucosal pH Regulation: Extending Sensitivity Analysis Using Sobol' Indices to Understand Higher Moments.","authors":"Manu Aggarwal, Owen Lewis, Angela Jarrett, M Y Hussaini, N G Cogan","doi":"10.1007/s11538-024-01308-x","DOIUrl":"10.1007/s11538-024-01308-x","url":null,"abstract":"<p><p>Several recent theoretical studies have indicated that a relatively simple secretion control mechanism in the epithelial cells lining the stomach may be responsible for maintaining a neutral (healthy) pH adjacent to the stomach wall, even in the face of enormous electrodiffusive acid transport from the interior of the stomach. Subsequent work used Sobol' Indices (SIs) to quantify the degree to which this secretion mechanism is \"self-regulating\" i.e. the degree to which the wall pH is held neutral as mathematical parameters vary. However, questions remain regarding the nature of the control that specific parameters exert over the maintenance of a healthy stomach wall pH. Studying the sensitivity of higher moments of the statistical distribution of a model output can provide useful information, for example, how one parameter may skew the distribution towards or away from a physiologically advantageous regime. In this work, we prove a relationship between SIs and the higher moments and show how it can potentially reduce the cost of computing sensitivity of said moments. We define <math><mi>γ</mi></math> -indices to quantify sensitivity of variance, skewness, and kurtosis to the choice of value of a parameter, and we propose an efficient strategy that uses both SIs and <math><mi>γ</mi></math> -indices for a more comprehensive sensitivity analysis. Our analysis uncovers a control parameter which governs the \"tightness of control\" that the secretion mechanism exerts on wall pH. Finally, we discuss how uncertainty in this parameter can be reduced using expert information about higher moments, and speculate about the physiological advantage conferred by this control mechanism.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"86 7","pages":"77"},"PeriodicalIF":2.0,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11629775/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141075332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Theory of Stoichiometric Intraguild Predation: Algae, Ciliate, and Daphnia.","authors":"Shufei Gao, Hao Wang, Sanling Yuan","doi":"10.1007/s11538-024-01306-z","DOIUrl":"10.1007/s11538-024-01306-z","url":null,"abstract":"<p><p>Consumers respond differently to external nutrient changes than producers, resulting in a mismatch in elemental composition between them and potentially having a significant impact on their interactions. To explore the responses of herbivores and omnivores to changes in elemental composition in producers, we develop a novel stoichiometric model with an intraguild predation structure. The model is validated using experimental data, and the results show that our model can well capture the growth dynamics of these three species. Theoretical and numerical analyses reveal that the model exhibits complex dynamics, including chaotic-like oscillations and multiple types of bifurcations, and undergoes long transients and regime shifts. Under moderate light intensity and phosphate concentration, these three species can coexist. However, when the light intensity is high or the phosphate concentration is low, the energy enrichment paradox occurs, leading to the extinction of ciliate and Daphnia. Furthermore, if phosphate is sufficient, the competitive effect of ciliate and Daphnia on algae will be dominant, leading to competitive exclusion. Notably, when the phosphorus-to-carbon ratio of ciliate is in a suitable range, the energy enrichment paradox can be avoided, thus promoting the coexistence of species. These findings contribute to a deeper understanding of species coexistence and biodiversity.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"86 7","pages":"79"},"PeriodicalIF":2.0,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141080782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}