季节性对蚊子种群动态的影响建模:媒介控制策略的见解。

IF 2 4区 数学 Q2 BIOLOGY
Joseph Baafi, Amy Hurford
{"title":"季节性对蚊子种群动态的影响建模:媒介控制策略的见解。","authors":"Joseph Baafi, Amy Hurford","doi":"10.1007/s11538-024-01409-7","DOIUrl":null,"url":null,"abstract":"<p><p>Mosquitoes are important vectors for the transmission of some major infectious diseases of humans, i.e., malaria, dengue, West Nile Virus and Zika virus. The burden of these diseases is different for different regions, being highest in tropical and subtropical areas, which have high annual rainfall, warm temperatures, and less pronounced seasonality. The life cycle of mosquitoes consists of four distinct stages: eggs, larvae, pupae, and adults. These life stages have different mortality rates and only adults can reproduce. Seasonal weather may affect the population dynamics of mosquitoes, and the relative abundance of different mosquito stages. We developed a stage-structured model that considers laboratory experiments describing how temperature and rainfall affects the reproduction, maturation and survival of different Anopheles mosquito stages, the species that transmits the parasite that causes malaria. We consider seasonal temperature and rainfall patterns and describe the stage-structured population dynamics of the Anopheles mosquito in Ain Mahbel, Algeria, Cape Town, South Africa, Nairobi, Kenya and Kumasi, Ghana. We find that neglecting seasonality leads to significant overestimation or underestimation of mosquito abundance. We find that depending on the region, mosquito abundance: peaks one, two or four times a year, periods of low abundance are predicted to occur for durations ranging from six months (Ain Mahbel) to not at all (Nairobi); and seasonal patterns of relative abundance of stages are substantially different. The region with warmer temperatures and higher rainfall across the year, Kumasi, Ghana, is predicted to have higher mosquito abundance, which is broadly consistent with reported malaria deaths relative to the other countries considered by our study. Our analysis reveals distinct patterns in mosquito abundance across different months and regions. Control strategies often target one specific life stage, for example, applying larvicides to kill mosquito larvae, or spraying insecticides to kill adult mosquitoes. Our findings suggest that differences in seasonal weather affect mosquito stage structure, and that the best approaches to vector control may differ between regions in timing, duration, and efficacy.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"87 2","pages":"33"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling the Impact of Seasonality on Mosquito Population Dynamics: Insights for Vector Control Strategies.\",\"authors\":\"Joseph Baafi, Amy Hurford\",\"doi\":\"10.1007/s11538-024-01409-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mosquitoes are important vectors for the transmission of some major infectious diseases of humans, i.e., malaria, dengue, West Nile Virus and Zika virus. The burden of these diseases is different for different regions, being highest in tropical and subtropical areas, which have high annual rainfall, warm temperatures, and less pronounced seasonality. The life cycle of mosquitoes consists of four distinct stages: eggs, larvae, pupae, and adults. These life stages have different mortality rates and only adults can reproduce. Seasonal weather may affect the population dynamics of mosquitoes, and the relative abundance of different mosquito stages. We developed a stage-structured model that considers laboratory experiments describing how temperature and rainfall affects the reproduction, maturation and survival of different Anopheles mosquito stages, the species that transmits the parasite that causes malaria. We consider seasonal temperature and rainfall patterns and describe the stage-structured population dynamics of the Anopheles mosquito in Ain Mahbel, Algeria, Cape Town, South Africa, Nairobi, Kenya and Kumasi, Ghana. We find that neglecting seasonality leads to significant overestimation or underestimation of mosquito abundance. We find that depending on the region, mosquito abundance: peaks one, two or four times a year, periods of low abundance are predicted to occur for durations ranging from six months (Ain Mahbel) to not at all (Nairobi); and seasonal patterns of relative abundance of stages are substantially different. The region with warmer temperatures and higher rainfall across the year, Kumasi, Ghana, is predicted to have higher mosquito abundance, which is broadly consistent with reported malaria deaths relative to the other countries considered by our study. Our analysis reveals distinct patterns in mosquito abundance across different months and regions. Control strategies often target one specific life stage, for example, applying larvicides to kill mosquito larvae, or spraying insecticides to kill adult mosquitoes. Our findings suggest that differences in seasonal weather affect mosquito stage structure, and that the best approaches to vector control may differ between regions in timing, duration, and efficacy.</p>\",\"PeriodicalId\":9372,\"journal\":{\"name\":\"Bulletin of Mathematical Biology\",\"volume\":\"87 2\",\"pages\":\"33\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Mathematical Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11538-024-01409-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-024-01409-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

蚊子是传播疟疾、登革热、西尼罗河病毒和寨卡病毒等人类重大传染病的重要媒介。这些疾病的负担在不同区域是不同的,在热带和亚热带地区是最高的,这些地区年降雨量大,气温温暖,季节性不太明显。蚊子的生命周期包括四个不同的阶段:卵、幼虫、蛹和成虫。这些生命阶段有不同的死亡率,只有成年动物才能繁殖。季节天气会影响蚊虫种群动态和不同蚊期的相对丰度。我们开发了一个阶段结构模型,该模型考虑了描述温度和降雨如何影响按蚊不同阶段的繁殖、成熟和生存的实验室实验,按蚊是传播导致疟疾的寄生虫的物种。我们考虑了季节温度和降雨模式,并描述了阿尔及利亚艾因马贝尔、南非开普敦、肯尼亚内罗毕和加纳库马西等地按蚊种群的阶段性结构动态。我们发现,忽视季节性会导致对蚊子丰度的严重高估或低估。我们发现,根据不同的地区,蚊子的丰度:峰值一年一次、两次或四次,预计低丰度期的持续时间从6个月(艾因马贝尔)到根本没有(内罗毕)不等;相对丰度的季节模式也有很大的不同。在全年气温较高、降雨量较多的地区,如加纳库马西,预计蚊子数量较多,与我们研究中考虑的其他国家相比,这与报告的疟疾死亡人数大致一致。我们的分析揭示了不同月份和地区蚊子数量的不同模式。控制策略通常针对一个特定的生命阶段,例如,使用杀幼虫剂杀死蚊子幼虫,或喷洒杀虫剂杀死成年蚊子。我们的研究结果表明,季节天气的差异会影响蚊子的阶段结构,并且媒介控制的最佳方法在时间、持续时间和效果上可能因地区而异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling the Impact of Seasonality on Mosquito Population Dynamics: Insights for Vector Control Strategies.

Mosquitoes are important vectors for the transmission of some major infectious diseases of humans, i.e., malaria, dengue, West Nile Virus and Zika virus. The burden of these diseases is different for different regions, being highest in tropical and subtropical areas, which have high annual rainfall, warm temperatures, and less pronounced seasonality. The life cycle of mosquitoes consists of four distinct stages: eggs, larvae, pupae, and adults. These life stages have different mortality rates and only adults can reproduce. Seasonal weather may affect the population dynamics of mosquitoes, and the relative abundance of different mosquito stages. We developed a stage-structured model that considers laboratory experiments describing how temperature and rainfall affects the reproduction, maturation and survival of different Anopheles mosquito stages, the species that transmits the parasite that causes malaria. We consider seasonal temperature and rainfall patterns and describe the stage-structured population dynamics of the Anopheles mosquito in Ain Mahbel, Algeria, Cape Town, South Africa, Nairobi, Kenya and Kumasi, Ghana. We find that neglecting seasonality leads to significant overestimation or underestimation of mosquito abundance. We find that depending on the region, mosquito abundance: peaks one, two or four times a year, periods of low abundance are predicted to occur for durations ranging from six months (Ain Mahbel) to not at all (Nairobi); and seasonal patterns of relative abundance of stages are substantially different. The region with warmer temperatures and higher rainfall across the year, Kumasi, Ghana, is predicted to have higher mosquito abundance, which is broadly consistent with reported malaria deaths relative to the other countries considered by our study. Our analysis reveals distinct patterns in mosquito abundance across different months and regions. Control strategies often target one specific life stage, for example, applying larvicides to kill mosquito larvae, or spraying insecticides to kill adult mosquitoes. Our findings suggest that differences in seasonal weather affect mosquito stage structure, and that the best approaches to vector control may differ between regions in timing, duration, and efficacy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
8.60%
发文量
123
审稿时长
7.5 months
期刊介绍: The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including: Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations Research in mathematical biology education Reviews Commentaries Perspectives, and contributions that discuss issues important to the profession All contributions are peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信