Bulletin of Earthquake Engineering最新文献

筛选
英文 中文
Mitigating inter-story drift concentration in seismic-resistant self-centering braced frames by using strong backup systems 利用强后备系统缓解抗震自定心支撑框架的层间漂移集中问题
IF 3.8 2区 工程技术
Bulletin of Earthquake Engineering Pub Date : 2024-09-04 DOI: 10.1007/s10518-024-01997-8
Jiahao Huang, Songye Zhu
{"title":"Mitigating inter-story drift concentration in seismic-resistant self-centering braced frames by using strong backup systems","authors":"Jiahao Huang,&nbsp;Songye Zhu","doi":"10.1007/s10518-024-01997-8","DOIUrl":"10.1007/s10518-024-01997-8","url":null,"abstract":"<div><p>Seismic-resistant self-centering concentrically braced frames (SC-CBFs) are susceptible to the concentration of inter-story drifts during earthquakes owing to the relatively low energy dissipation ability of braces. To address this limitation, this study proposed a novel solution by designing a strong backup (SB) system to mitigate inter-story deformation concentration in “weak” stories. The proposed SB system consisting of truss members can be attached to the existing SC-CBF through pin connections, forming a system, termed strong backup SC-CBF (SC-CBF-SB), to promote a more uniform distribution of inter-story drifts along the height of the frame and mitigate the weak story behavior. A six-story chevron-braced frame is adopted to investigate the seismic performance of SC-CBF and SC-CBF-SB. Finite element models of SC-CBF and SC-CBF-SB are built. The mechanical characteristics and dynamic responses of the SC-CBF-SB are examined. To comprehensively evaluate the performance of both SC-CBF and SC-CBF-SB, static pushover analyses and nonlinear time-history analyses are conducted. Additionally, incremental dynamic analysis (IDA) is performed to evaluate the responses (particularly drift concentration) of both frame types subjected to increasing seismic intensity levels. Numerical results show that the maximum value of the drift concentration factor (DCF) is around 1.3 and 1.8 for SC-CBF-SB and SC-CBF, respectively, indicating that SC-CBF-SB can effectively mitigate inter-story drift concentration of SC-CBF. Meanwhile, the proposed SB system has a minimal negative impact on the favorable SC ability of the frame.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"22 13","pages":"6509 - 6543"},"PeriodicalIF":3.8,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10518-024-01997-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142193663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implementation of clustering algorithms for  damage prediction through seismic local-site parameters: 2023 Kahramanmaraş earthquake sequence 通过地震现场参数实施损害预测聚类算法:2023 年卡赫拉曼马拉什地震序列
IF 3.8 2区 工程技术
Bulletin of Earthquake Engineering Pub Date : 2024-09-04 DOI: 10.1007/s10518-024-02003-x
Mustafa Senkaya, Enes Furkan Erkan, Ali Silahtar, Hasan Karaaslan
{"title":"Implementation of clustering algorithms for  damage prediction through seismic local-site parameters: 2023 Kahramanmaraş earthquake sequence","authors":"Mustafa Senkaya,&nbsp;Enes Furkan Erkan,&nbsp;Ali Silahtar,&nbsp;Hasan Karaaslan","doi":"10.1007/s10518-024-02003-x","DOIUrl":"10.1007/s10518-024-02003-x","url":null,"abstract":"<div><p>The latest earthquakes (Morrocco, Nepal, Sichuan – China, etc.) have highlighted the critical importance of local-site parameters on the vulnerability of existing building stock. The paper performs the clustering method based on the sub-surface parameters for structural damage prediction. The data set includes the damage status for 44 locations after the 2023 Kahramanmaraş earthquake sequence and local site parameters: Vs<sub>30</sub>, predominant frequency (f<sub>0</sub>), horizontal to vertical spectral ratio value (A<sub>0</sub>), and engineering bedrock depth (VsD<sub>760</sub>). The Fuzzy C-Means (FCM) and Spectral Clustering (SC) algorithms are carried out on the pre-processed data set, including the sub-surface parameters for each location and the data set clustered into two-clusters within each method. Then, the estimated clusters are compared with the post-earthquake two clusters representing the cluster of damage and no-damage state for considered locations that composed through official damage assessment reports The FCM algorithm yielded a 90% accuracy compared to actual clusters, while the results of the SC algorithm indicated an 86% accuracy. Among the parameters, the VsD<sub>760</sub> and f<sub>0</sub> demonstrate the ability to establish a discernible demarcation by manifesting distinguishable clustering patterns. Notably, the Area Under the Curve of the Receiver Operating Characteristic (AUC-ROC) value is calculated at 97% and 85% for FCM and SC algorithms, respectively. The outcomes of this study offer the potential to predict the structural damage status of a location under a crucial seismic hazard in the pre-earthquake condition. This enables the development earthquake-resistant cities prior to earthquakes or implement necessary precautions to mitigate seismic risk in the afterward.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"22 13","pages":"6545 - 6566"},"PeriodicalIF":3.8,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142193661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seismic retrofitting of masonry infilled RC buildings in low-to moderate-seismic regions: case study of typical Sri Lankan school buildings 中低震级地区砌体填充式 RC 建筑的抗震改造:典型斯里兰卡学校建筑案例研究
IF 3.8 2区 工程技术
Bulletin of Earthquake Engineering Pub Date : 2024-09-02 DOI: 10.1007/s10518-024-02010-y
Mathavanayakam Sathurshan, Julian Thamboo, Tiziana Rossetto, Kushan Wijesundara, Chinthaka Mallikarachchi, Jonas Cels, Marco Baiguera, Marta Del Zoppo, Priyan Dias
{"title":"Seismic retrofitting of masonry infilled RC buildings in low-to moderate-seismic regions: case study of typical Sri Lankan school buildings","authors":"Mathavanayakam Sathurshan,&nbsp;Julian Thamboo,&nbsp;Tiziana Rossetto,&nbsp;Kushan Wijesundara,&nbsp;Chinthaka Mallikarachchi,&nbsp;Jonas Cels,&nbsp;Marco Baiguera,&nbsp;Marta Del Zoppo,&nbsp;Priyan Dias","doi":"10.1007/s10518-024-02010-y","DOIUrl":"10.1007/s10518-024-02010-y","url":null,"abstract":"<div><p>Seismic retrofitting solutions for reinforced concrete (RC) school building types in high-seismic regions are extensively reported in the state-of-the-art. Conversely, limited studies have focused on the extent of retrofitting needed for RC school buildings in low- to moderate-seismic regions. To explore this aspect, seismic retrofitting options for RC school buildings in Sri Lanka are investigated. Three retrofitting options are examined: (1) adding/altering masonry infill walls (MI walls) to reduce irregularity in buildings, (2) RC jacketing of columns and (3) a combination of adding/altering MI walls and RC jacketing. These retrofit options are applied to a common typology of Sri Lankan MI-RC school buildings, considering two and three storey height variations. A simplified numerical modelling approach that accounts for the contribution of MIs, the shear failure of RC column and torsional effects is adopted to analyse the performance of the school buildings with and without retrofit. Based on the analyses, three damage states are defined: damage limitation (DL), significant damage (SD) and near collapse (NC). Finally, a multi-criteria decision making (MCDM) method is used to determine the optimal retrofitting option for the considered school building typology, considering engineering and economic parameters. The optimal retrofit solution for the three-storey MI-RC school building is found to be jacketing of ground floor columns. Conversely, for the two-storey MI-RC school building, alteration of infill walls (MI walls) is deemed optimal. Finally, a sensitivity analysis is carried out on the MCDM method.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"22 13","pages":"6447 - 6471"},"PeriodicalIF":3.8,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142193646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seismic behavior of timber-framed structures infilled with dry brick masonry 用干砖砌体填充的木结构建筑的抗震性能
IF 3.8 2区 工程技术
Bulletin of Earthquake Engineering Pub Date : 2024-09-02 DOI: 10.1007/s10518-024-02011-x
Aanisa Gani, Jan Mohammad Banday, Durgesh C. Rai
{"title":"Seismic behavior of timber-framed structures infilled with dry brick masonry","authors":"Aanisa Gani,&nbsp;Jan Mohammad Banday,&nbsp;Durgesh C. Rai","doi":"10.1007/s10518-024-02011-x","DOIUrl":"10.1007/s10518-024-02011-x","url":null,"abstract":"<div><p>Earthquake-prone regions have seen the resilience of traditional timber-framed masonry construction systems through previous seismic events. The post-earthquake studies show that these building systems have exceptional resilience to seismic activity and can endure multiple seismic events throughout their lifespan. This performance stands out from many contemporary constructions. Although there is a significant amount of evidence regarding the distinct behavior of these structures during earthquakes, there is a limited amount of meaningful quantitative experimental data on their seismic performance. This study showcases the findings of a series of half-scale shake table experiments carried out on a single-room; single-story timber frame filled with dry bond brick masonry. Two half-scale models were created and tested on a shaking table to investigate the seismic performance of timber framed masonry structural systems. One model was left without infill, while the other was infilled with dry bond brick masonry. To analyze the dynamic behavior, both models were exposed to random base excitation. Additionally, the models were tested with gradually increasing ground motion to study their response to seismic activity, following a method known as single ground motion record incremental dynamic analysis. The evaluation focused on the dynamic characteristics, including the assessment of natural frequencies, damping, mode shapes, and stiffness degradation. The stiffness decreased to 43% of the undamaged stiffness in the model with bricks and 62% of the undamaged stiffness in the model without infill. An assessment and evaluation were conducted on the peak acceleration and displacement responses, as well as the global hysteresis response. The acceleration response was significantly higher for the model with brick infill, with an amplification of 300%. In contrast, the model without infill had a lower amplification value of 150%. According to the findings of the study, it is evident that the timber framed structure exhibits a significant level of flexibility and deformability. Additionally, the structure's ability to dissipate energy increased as the peak ground acceleration of the input ground motion increased.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"22 13","pages":"6419 - 6446"},"PeriodicalIF":3.8,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142193649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Time-domain acceleration-based pulse characterization of 2023 Kahramanmaraş earthquakes 基于时域加速度的 2023 年卡赫拉曼马拉什地震脉冲特征分析
IF 3.8 2区 工程技术
Bulletin of Earthquake Engineering Pub Date : 2024-08-29 DOI: 10.1007/s10518-024-02007-7
Sedef Kocakaplan Sezgin, Ehsan Ahmadi, Mohammad M. Kashani
{"title":"Time-domain acceleration-based pulse characterization of 2023 Kahramanmaraş earthquakes","authors":"Sedef Kocakaplan Sezgin,&nbsp;Ehsan Ahmadi,&nbsp;Mohammad M. Kashani","doi":"10.1007/s10518-024-02007-7","DOIUrl":"10.1007/s10518-024-02007-7","url":null,"abstract":"<div><p>On February 6, 2023, two significant earthquakes struck the region of Kahramanmaraş, Türkiye. The first earthquake, with a magnitude of 7.7 and a depth of 8.6 km, occurred in Pazarcık, and the second earthquake, with a magnitude 7.6 and a depth of 7.0 km, struck Elbistan. These two devastating events led to the loss of lives and massive destruction of civil infrastructures. In this work, pulse components of the ground motions for both earthquakes are characterized through a multi-pulse decomposition method developed by the authors. The work particularly focuses on cumulative energy, period, and amplitude of dominant pulse components using two extensive ground motion ensembles: (1) 103 ground motions from the Pazarcık earthquake, and (2) 79 ground motions from the Elbistan earthquake. It is found that, for the Pazarcık earthquake, pulse cumulative energy is more pronounced for the ground motions in proximity to the rupture lines. However, for the Elbistan earthquake, pulse cumulative energy is not significant for the ground motions in a specific area and is roughly uniformly distributed across all the ground motions and the entire region. It is also seen that dominant pulse periods lie predominantly within the range of 0.5–1.5 s for both earthquakes highlighting the significant damage caused. Finally, the pulse amplitudes exceed 0.5 g for several ground motions of the Pazarcık earthquake while all the amplitudes fall below 0.5 g for the Elbistan earthquake.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"22 13","pages":"6259 - 6279"},"PeriodicalIF":3.8,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142193659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental behaviour of ductile diagonal connections for rack supported warehouses 货架支撑仓库的延性对角线连接的实验行为
IF 3.8 2区 工程技术
Bulletin of Earthquake Engineering Pub Date : 2024-08-28 DOI: 10.1007/s10518-024-01999-6
Agnese Natali, Francesco Morelli, Cristian Vulcu, Dimitrios Tsarpalis, Dimitrios Vamvatsikos, Walter Salvatore, Benno Hoffmeister, Ioannis Vayas
{"title":"Experimental behaviour of ductile diagonal connections for rack supported warehouses","authors":"Agnese Natali,&nbsp;Francesco Morelli,&nbsp;Cristian Vulcu,&nbsp;Dimitrios Tsarpalis,&nbsp;Dimitrios Vamvatsikos,&nbsp;Walter Salvatore,&nbsp;Benno Hoffmeister,&nbsp;Ioannis Vayas","doi":"10.1007/s10518-024-01999-6","DOIUrl":"10.1007/s10518-024-01999-6","url":null,"abstract":"<div><p>Steel racking systems are widely adopted for storage purposes: they are thin-walled structures composed of consecutive trusses, connected with beams on which the palletized goods are stored. Their geometry and structural configuration strongly depend on market and operator necessities, and, in modern applications, racks can also function as the supporting structure of the warehouse itself in the form of Rack Supported or High-Bay Warehouses. With the increase of the overall geometric dimensions and the global weight of the stored material, the seismic action becomes more relevant for the design. Along these lines, the development and experimental testing of a dedicated seismic design approach for ductile steel racks is here presented, with particular attention to Rack Supported Warehouses. This approach exploits the ductility of trusses introduced via the plastic ovalization mechanism of the diagonal-to-upright connections while a tailored capacity design is used to assure the elastic behaviour of the rest of the structure and to keep the brittle failure mechanisms at bay.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"22 13","pages":"6799 - 6828"},"PeriodicalIF":3.8,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10518-024-01999-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142193667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis and damage correlation of ground motion intensity measures from records of the 2023 Turkey-Syria earthquake 根据 2023 年土耳其-叙利亚地震记录得出的地动强度测量值的分析和损害相关性
IF 4.6 2区 工程技术
Bulletin of Earthquake Engineering Pub Date : 2024-08-28 DOI: 10.1007/s10518-024-01989-8
Kalil Erazo
{"title":"Analysis and damage correlation of ground motion intensity measures from records of the 2023 Turkey-Syria earthquake","authors":"Kalil Erazo","doi":"10.1007/s10518-024-01989-8","DOIUrl":"https://doi.org/10.1007/s10518-024-01989-8","url":null,"abstract":"<p>A Ground Motion Intensity Measure (GMIM) provides a quantitative metric of the strength of a ground motion with the objective of defining a mapping to the damaging effects induced by earthquakes. The correlation between GMIMs and earthquake damage allows their use in earthquake engineering applications such as (pre-event) seismic hazard/risk assessment and mitigation, and (post-event) damage assessment and resource allocation for disaster response. GMIMs are also used for damage prediction in the context of performance-based earthquake engineering and earthquake-resistant design. This paper presents the evaluation of GMIMs using strong motion records obtained during the 2023 Turkey-Syria earthquake. The GMIMs studied include peak ground acceleration, peak ground velocity, spectral accelerations, root-mean-square acceleration, Arias intensity, cumulative absolute velocity, Housner spectral intensity, and Araya-Saragoni intensity. The GMIMs are evaluated at several spatial locations where ground motion records were measured during the events. The results demonstrate that some GMIMs showed significantly high values at locations where severe damage was observed after the earthquake. Based on a cross-correlation analysis the peak ground acceleration and the root-mean-square acceleration were the GMIMs that showed the strongest correlation with the observed damage. It is also shown that the maximum considered earthquake spectra were exceeded at several locations where extensive damage was observed, with the design base shear underestimated by a factor of up to four when considering the compounding effects of the strong ground motion shaking and the fundamental vibration period shift due to the stiffening induced by infill walls in frame structures.</p>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"14 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142193648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shear resistance of RC members with closed FRP jacket for Eurocode 8 根据欧洲规范 8,带有封闭式玻璃钢护套的钢筋混凝土构件的抗剪性能
IF 3.8 2区 工程技术
Bulletin of Earthquake Engineering Pub Date : 2024-08-27 DOI: 10.1007/s10518-024-02000-0
Dionysis Biskinis, Michael N. Fardis
{"title":"Shear resistance of RC members with closed FRP jacket for Eurocode 8","authors":"Dionysis Biskinis,&nbsp;Michael N. Fardis","doi":"10.1007/s10518-024-02000-0","DOIUrl":"10.1007/s10518-024-02000-0","url":null,"abstract":"<div><p>The shear resistance computed using Annex J of Part 1–1 of Generation 2 of Eurocode 2—on strengthening of RC members for static loads with externally-bonded Fibre-reinforced-polymers (FRPs)—exceeds by about 25% on average the cyclic shear resistance of 64 FRP-jacketed shear-critical RC specimens in the international literature. The semi-empirical cyclic shear resistance approach for FRP-wrapped RC members in Annex A of Part 3 of Generation 1 of Eurocode 8 is in good average agreement with the results of these tests, but conflicts with the rational, mechanics-based approach for shear resistance against static actions in Generation 2 of Eurocode 2, which has already been adopted in Generation 2 of Eurocode 8 for members without FRP jackets, adapted to the specific needs of seismic design. This latter approach is modified and extended to cover RC members with closed FRP jackets in a more technically sound way than in Annex J of Generation 2 of Eurocode 2. The new approach fits the available cyclic test results without bias or lack-of-fit with respect to the key variables controlling cyclic shear resistance, gives slightly better accuracy than the semi-empirical one in Generation 1 of Eurocode 8 and does much better in correctly identifying as not failing in shear FRP-wrapped RC members which have failed in flexure or not failed at all during cyclic testing.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"22 13","pages":"6359 - 6377"},"PeriodicalIF":3.8,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142193660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seismic loss assessment of direct-DBD platform-type cross-laminated timber shear wall systems using FEMA P-58 methodology 采用 FEMA P-58 方法对直接--DBD 平台型交叉层压材剪力墙系统进行地震损失评估
IF 3.8 2区 工程技术
Bulletin of Earthquake Engineering Pub Date : 2024-08-16 DOI: 10.1007/s10518-024-01998-7
Hamed Dadkhah, Cristiano Loss
{"title":"Seismic loss assessment of direct-DBD platform-type cross-laminated timber shear wall systems using FEMA P-58 methodology","authors":"Hamed Dadkhah,&nbsp;Cristiano Loss","doi":"10.1007/s10518-024-01998-7","DOIUrl":"10.1007/s10518-024-01998-7","url":null,"abstract":"<div><p>An efficient design method should provide practitioners with a means for sizing timber buildings to meet specific performance levels against estimated earthquake intensities. Displacement and energy design considerations in force-based design (FBD) procedures are not as precise as intended in complex systems, such as mid- to high-rise timber buildings. The main aim of this study is to tailor the direct displacement-based design (D-DBD) classical framework to platform-type cross-laminated timber (CLT) shear wall structural systems and validate their performance for low-rise to high-rise timber mixed-use buildings. A comparison with results obtained via the FBD analyses is also provided. To this end, timber buildings with heights of 4, 8 and 12 stories are designed via the D-DBD and FBD methods. The seismic performance of platform-type CLT wall buildings is assessed in terms of the repair cost, repair time and casualty rate using FEMA P-58 methodology. The seismic response of CLT shear walls shows that the FBD method may lead to an expensive overdesign, especially in high-rise platform-type CLT walls. Conversely, the D-DBD method develops structural systems which can sustain a comparable level of damage from low- to high-rise platform-type CLT walls. Although the seismic loss assessment of buildings shows slightly better performance for the FBD method than the D-DBD method, it is worth noting that the D-DBD method does not lead to an unsafe building. Consequently, the D-DBD method sounds like a proper alternative approach for designing the CLT shear walls to achieve target performance levels without requiring a premium upfront cost.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"22 13","pages":"6379 - 6417"},"PeriodicalIF":3.8,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10518-024-01998-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142193662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to “Ground-motion models for earthquakes occurring in the United Kingdom” 对 "英国发生地震的地动模型 "的更正
IF 3.8 2区 工程技术
Bulletin of Earthquake Engineering Pub Date : 2024-08-15 DOI: 10.1007/s10518-024-01992-z
John Douglas, Guillermo Aldama-Bustos, Sarah Tallett-Williams, Manuela Daví, Iain J. Tromans
{"title":"Correction to “Ground-motion models for earthquakes occurring in the United Kingdom”","authors":"John Douglas,&nbsp;Guillermo Aldama-Bustos,&nbsp;Sarah Tallett-Williams,&nbsp;Manuela Daví,&nbsp;Iain J. Tromans","doi":"10.1007/s10518-024-01992-z","DOIUrl":"10.1007/s10518-024-01992-z","url":null,"abstract":"","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"22 11","pages":"5953 - 5954"},"PeriodicalIF":3.8,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142193668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信