EcoMat最新文献

筛选
英文 中文
Solar-powered mixed-linker metal–organic frameworks for water harvesting from arid air 用于从干旱空气中收集水的太阳能混合连接剂金属有机框架
IF 10.7
EcoMat Pub Date : 2024-06-23 DOI: 10.1002/eom2.12473
Xueli Yan, Fei Xue, Chunyang Zhang, Hao Peng, Jie Huang, Feng Liu, Kejian Lu, Ruizhe Wang, Jinwen Shi, Naixu Li, Wenshuai Chen, Maochang Liu
{"title":"Solar-powered mixed-linker metal–organic frameworks for water harvesting from arid air","authors":"Xueli Yan, Fei Xue, Chunyang Zhang, Hao Peng, Jie Huang, Feng Liu, Kejian Lu, Ruizhe Wang, Jinwen Shi, Naixu Li, Wenshuai Chen, Maochang Liu","doi":"10.1002/eom2.12473","DOIUrl":"10.1002/eom2.12473","url":null,"abstract":"<p>Metal–organic frameworks (MOFs) are a class of promising nanomaterials for atmospheric water harvesting (AWH), especially in arid remote areas. However, several challenges are still faced for practical applications because of the dissatisfied water adsorption/desorption properties in terms of the capability, kinetics, and stability. Herein, we report the facile synthesis of a nano-sized octahedral nitrogen-modified MOF-801 that exhibits superior solar-powered AWH performance using a custom-made device, with a state-of-the-art water harvesting ability up to <span></span><math>\u0000 <mrow>\u0000 <mn>4.64</mn>\u0000 <mspace></mspace>\u0000 <msub>\u0000 <mi>L</mi>\u0000 <mrow>\u0000 <msub>\u0000 <mi>H</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <mi>O</mi>\u0000 </mrow>\u0000 </msub>\u0000 <mspace></mspace>\u0000 <msup>\u0000 <msub>\u0000 <mi>kg</mi>\u0000 <mtext>MOFs</mtext>\u0000 </msub>\u0000 <mrow>\u0000 <mo>−</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msup>\u0000 </mrow></math> from air upon 12-h test under a relative humidity (RH) of 30% and simulated sunlight irradiation. The nitrogen-modified MOF-801 with rapid sorption–desorption kinetics, uptakes <span></span><math>\u0000 <mrow>\u0000 <mn>0.29</mn>\u0000 <mspace></mspace>\u0000 <msub>\u0000 <mi>g</mi>\u0000 <mrow>\u0000 <msub>\u0000 <mi>H</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <mi>O</mi>\u0000 </mrow>\u0000 </msub>\u0000 <mspace></mspace>\u0000 <msup>\u0000 <msub>\u0000 <mi>g</mi>\u0000 <mtext>MOFs</mtext>\u0000 </msub>\u0000 <mrow>\u0000 <mo>-</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msup>\u0000 </mrow></math> of water at 30% RH within 30 min and releases 90% of the captured water within 10 min under 1-sun illumination. The success relies on N-doping-induced mixed-linkers in the form of 2,3-diaminobutanedioic acid and fumaric acid in the unique pore structures of the MOFs for rapid and high-capacity water capture. The N-doped MOF-801 with water uptake capacity, fast adsorption kinetics, and cycle stability sheds light on the practical use of MOFs for effective solar-powered water harvesting from droughty air.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 7","pages":""},"PeriodicalIF":10.7,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12473","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking fast-charging capabilities of lithium-ion batteries through liquid electrolyte engineering 通过液态电解质工程释放锂离子电池的快速充电能力
IF 10.7
EcoMat Pub Date : 2024-06-20 DOI: 10.1002/eom2.12476
Chaeeun Song, Seung Hee Han, Hyeongyu Moon, Nam-Soon Choi
{"title":"Unlocking fast-charging capabilities of lithium-ion batteries through liquid electrolyte engineering","authors":"Chaeeun Song,&nbsp;Seung Hee Han,&nbsp;Hyeongyu Moon,&nbsp;Nam-Soon Choi","doi":"10.1002/eom2.12476","DOIUrl":"10.1002/eom2.12476","url":null,"abstract":"<p>Global trends toward green energy have empowered the extensive application of high-performance energy storage systems. With the worldwide spread of electric vehicles (EVs), lithium-ion batteries (LIBs) capable of fast-charging have become increasingly important. Nonetheless, state-of-the-art LIBs have failed to satisfy the demands of prospective customers, including rapid charging, extended cycle life, and high energy density. Addressing these challenges through innovations in material science and other advanced battery technologies is essential for meeting the growing demands of prospective customers. Besides the choice of active materials, electrolyte formulation has a significant impact on the fast-charging performance and cycle life of LIBs over a wide range of temperatures. The liquid electrolyte is typically composed of lithium salts to provide an ion source, solvents to carry Li<sup>+</sup> ions, and functional additives to build a stable solid electrolyte interphase (SEI). To enable the fast movement of Li<sup>+</sup> ions, the liquid electrolytes should have low viscosity and high ionic conductivity. Meanwhile, SEI layers must be thin, uniform and ionically conductive. Furthermore, the low binding energy of the solvent facilitates desolvation of the solvation sheath, enabling fast Li<sup>+</sup> ion transport to the anode during fast charging. This review provides the latest insights into rapid Li<sup>+</sup> ion transport during fast charging, focusing on ensuring a deeper understanding of liquid electrolyte chemistry. The involvement of existing electrolyte mechanisms in materials discovery will develop electrolyte engineering techniques to improve the fast-charging performance of batteries over a wide temperature range and will also facilitate the development of EV-adoptable advanced electrodes.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 7","pages":""},"PeriodicalIF":10.7,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12476","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Textile-based triboelectric nanogenerators integrated with 2D materials 与二维材料集成的纺织品基三电纳米发电机
IF 10.7
EcoMat Pub Date : 2024-06-18 DOI: 10.1002/eom2.12471
Iftikhar Ali, Nazmul Karim, Shaila Afroj
{"title":"Textile-based triboelectric nanogenerators integrated with 2D materials","authors":"Iftikhar Ali,&nbsp;Nazmul Karim,&nbsp;Shaila Afroj","doi":"10.1002/eom2.12471","DOIUrl":"10.1002/eom2.12471","url":null,"abstract":"<p>The human body continuously generates ambient mechanical energy through diverse movements, such as walking and cycling, which can be harvested via various renewable energy harvesting mechanisms. Triboelectric Nanogenerator (TENG) stands out as one of the most promising emerging renewable energy harvesting technologies for wearable applications due to its ability to harness various forms of mechanical energies, including vibrations, pressure, and rotations, and convert them into electricity. However, their application is limited due to challenges in achieving performance, flexibility, low power consumption, and durability. Here, we present a robust and high-performance self-powered system integrated into cotton fabric by incorporating a textile-based triboelectric nanogenerator (T-TENG) based on 2D materials, addressing both energy harvesting and storage. The proposed system extracts significant ambient mechanical energy from human body movements and stores it in a textile supercapacitor (T-Supercap). The integration of 2D materials (graphene and MoS<sub>2</sub>) in fabrication enhances the performance of T-TENG significantly, as demonstrated by a record-high open-circuit voltage of 1068 V and a power density of 14.64 W/m<sup>2</sup> under a force of 22 N. The developed T-TENG in this study effectively powers 200+ LEDs and a miniature watch while also charging the T-Supercap with 4-5 N force for efficient miniature electronics operation. Integrated as a step counter within a sock, the T-TENG serves as a self-powered step counter sensor. This work establishes a promising platform for wearable electronic textiles, contributing significantly to the advancement of sustainable and autonomous self-powered wearable technologies.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 7","pages":""},"PeriodicalIF":10.7,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12471","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Back cover Image 封底图片
EcoMat Pub Date : 2024-06-17 DOI: 10.1002/eom2.12475
{"title":"Back cover Image","authors":"","doi":"10.1002/eom2.12475","DOIUrl":"https://doi.org/10.1002/eom2.12475","url":null,"abstract":"<p>This illustration depicts the precise carbon coating of a cost-effective SiO<sub>2</sub> primary particle using different organic materials to create a highly electronic conductive material. This development enhances high-energy-density lithium-ion battery systems, making them ideal for electric vehicle applications by improving performance, and affordability.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12475","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141424961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-dimensionalization of 3D perovskites for passive narrowband Photodetection 用于无源窄带光电探测的三维过氧化物的二维化
IF 10.7
EcoMat Pub Date : 2024-06-17 DOI: 10.1002/eom2.12472
Xin Song, Siwen Liu, Lizhi Ren, Yunxian Zuo, Shimin Wang, Erjing Wang, Jin Qian, Tao Ye, Kai Wang, Congcong Wu
{"title":"Two-dimensionalization of 3D perovskites for passive narrowband Photodetection","authors":"Xin Song,&nbsp;Siwen Liu,&nbsp;Lizhi Ren,&nbsp;Yunxian Zuo,&nbsp;Shimin Wang,&nbsp;Erjing Wang,&nbsp;Jin Qian,&nbsp;Tao Ye,&nbsp;Kai Wang,&nbsp;Congcong Wu","doi":"10.1002/eom2.12472","DOIUrl":"10.1002/eom2.12472","url":null,"abstract":"<p>In the rapidly advancing field of information technology, passive sensors with the exemption of external power input can serve as intelligent instruments for end-node data acquisition. 3D perovskites have been recognized as a superior optoelectronic material but suffering from notorious instability due to their “soft lattice” nature. Replacing by their 2D counterparts in these photo-sensing applications can boost the reliability level. However, traditional fabrication for 2D perovskite relay on wet chemistry methods, exhibiting complication, and inefficiency in making high-quality films for device integration. This study unveils a new solid–solid conversion routing toward a direct transformation from 3D orientated films into 2D highly crystalline configuration, based on a spontaneous lattice regulation mechanism through an amine steam treatment. The resultant 2D film exhibits greater orientational micromorphology and a distinct monochromatic narrowband light sensing behavior after integration into a self-powered photodetector. This method on perovskite conversion bears the promise of advanced future-manufacturing for high-performance photonic sensing.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 7","pages":""},"PeriodicalIF":10.7,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12472","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141530890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front cover Image 封面图片
EcoMat Pub Date : 2024-06-17 DOI: 10.1002/eom2.12370
{"title":"Front cover Image","authors":"","doi":"10.1002/eom2.12370","DOIUrl":"https://doi.org/10.1002/eom2.12370","url":null,"abstract":"<p>The cover image of the publication eom2.12453 showed how lignin, a bio-polymer material, significantly enhances the sensitivity of MXene composite as a 2D materials chemiresistive sensor for molecular gas detection. This study also demonstrated a hybridized MXene composite flexible chemiresistive sensor, which paves the way for new solid-state sensing platforms for curvature structures.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12370","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141424960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inside Front Cover Image 封面内页图片
EcoMat Pub Date : 2024-06-17 DOI: 10.1002/eom2.12474
{"title":"Inside Front Cover Image","authors":"","doi":"10.1002/eom2.12474","DOIUrl":"https://doi.org/10.1002/eom2.12474","url":null,"abstract":"<p>Indoor photovoltaics suffer from non-radiative recombination and parasitic leakage current especially due to low carrier density. Incorporating a porous alumina interlayer in perovskite photovoltaics mitigates non-radiative recombination and parasitic leakage current, enhancing efficiency under low-light indoor conditions. This strategy is demonstrated in large-area modules at 23.03 cm<sup>2</sup>, achieving 33.5% efficiency and 107.3 µW/cm<sup>2</sup> power density under LED 1000 lux.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12474","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141424962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Substituent engineering in tertiary phosphine oxides for passivating defects of perovskite solar cells 用于钝化过氧化物太阳能电池缺陷的叔膦氧化物取代基工程
IF 10.7
EcoMat Pub Date : 2024-06-17 DOI: 10.1002/eom2.12470
Sun-Ho Lee, Seong Chan Cho, Sang Uck Lee, Nam-Gyu Park
{"title":"Substituent engineering in tertiary phosphine oxides for passivating defects of perovskite solar cells","authors":"Sun-Ho Lee,&nbsp;Seong Chan Cho,&nbsp;Sang Uck Lee,&nbsp;Nam-Gyu Park","doi":"10.1002/eom2.12470","DOIUrl":"10.1002/eom2.12470","url":null,"abstract":"<p>Defect passivation based on Lewis acid–base chemistry has been regarded as an effective strategy to improve the photovoltaic performance and stability of perovskite solar cells (PSCs). Here, we report on tertiary phosphine oxides (R<sub>3</sub>PO) as materials for defect passivation, where photovoltaic performance was investigated depending on the substituents R. Electron-donating ability of the substituents in R<sub>3</sub>PO was found to play an important role in passivation. Cyclohexyl substituent was better in achieving photovoltaic performance than linear hexyl substituent. The heterocyclic morpholine substituent bearing oxygen and nitrogen in cyclohexyl form further improved photovoltaic performance due to its enhanced electron-donating ability. Compared with an untreated PSC, the trimorpholinophosphine oxide (TMPPO)-treated PSC improved the power conversion efficiency from 21.95% to 23.72%. Additionally, the dark-storage stability test with an unencapsulated device showed that the TMPPO-treated device maintained 92.7% of its initial PCE after 1250 h, while 86.8% was maintained for the untreated device. Three hundred hour-light-soaking of the encapsulated devices revealed that the operational stability of the TMPPO-treated PSC was superior to the untreated device.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 7","pages":""},"PeriodicalIF":10.7,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12470","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Precision integration of uniform molecular-level carbon into porous silica framework for synergistic electrochemical activation in high-performance lithium–ion batteries 将均匀的分子级碳精确集成到多孔二氧化硅框架中,为高性能锂离子电池提供协同电化学活化功能
EcoMat Pub Date : 2024-06-12 DOI: 10.1002/eom2.12469
Seungbae Oh, Xue Dong, Chaeheon Woo, Xiaojie Zhang, Yeongjin Kim, Kyung Hwan Choi, Bom Lee, Ji-Hee Kim, Jinsu Kang, Hyeon-Seok Bang, Jiho Jeon, Hyung-Suk Oh, Hak Ki Yu, Junyoung Mun, Jae-Young Choi
{"title":"Precision integration of uniform molecular-level carbon into porous silica framework for synergistic electrochemical activation in high-performance lithium–ion batteries","authors":"Seungbae Oh,&nbsp;Xue Dong,&nbsp;Chaeheon Woo,&nbsp;Xiaojie Zhang,&nbsp;Yeongjin Kim,&nbsp;Kyung Hwan Choi,&nbsp;Bom Lee,&nbsp;Ji-Hee Kim,&nbsp;Jinsu Kang,&nbsp;Hyeon-Seok Bang,&nbsp;Jiho Jeon,&nbsp;Hyung-Suk Oh,&nbsp;Hak Ki Yu,&nbsp;Junyoung Mun,&nbsp;Jae-Young Choi","doi":"10.1002/eom2.12469","DOIUrl":"10.1002/eom2.12469","url":null,"abstract":"<p>The development of advanced anode materials for lithium-ion batteries that can provide high specific capacity and stable cycle performance is of paramount importance. This study presents a novel approach for synthesizing molecular-level homogeneous carbon integration to porous SiO<sub>2</sub> nanoparticles (SiO<sub>2</sub>@C NPs) tailored to enhance their electrochemical activities for lithium-ion battery anode. By varying the ratio of the precursors for sol–gel reaction of (phenyltrimethoxysilane (PTMS) and tetraethoxysilane (TEOS)), the carbon content and porosity within SiO<sub>2</sub>@C NPs is precisely controlled. With a 4:6 PTMS and TEOS ratio, the SiO<sub>2</sub>@C NPs exhibit a highly mesoporous structure with thin carbon and the partially reduced SiO<sub><i>x</i></sub> phases, which balances ion and charge transfer for electrochemical activation of SiO<sub>2</sub>@C NPs resulting remarkable capacity and cycle performance. This study offers a novel strategy for preparing affordable high capacity SiO<sub>2</sub>-based advanced anode materials with enhanced electrochemical performances.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12469","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141352650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controlled growth of uniform and dense perovskite layers on SnO2 via interface passivation by PbS quantum dots 通过 PbS 量子点的界面钝化,在 SnO2 上控制生长均匀致密的过氧化物层
EcoMat Pub Date : 2024-06-03 DOI: 10.1002/eom2.12456
Yulin Liu, Sumin Bae, Seongha Lee, Anqi Wang, Youngsoo Jung, Doh-Kwon Lee, Jung-Kun Lee
{"title":"Controlled growth of uniform and dense perovskite layers on SnO2 via interface passivation by PbS quantum dots","authors":"Yulin Liu,&nbsp;Sumin Bae,&nbsp;Seongha Lee,&nbsp;Anqi Wang,&nbsp;Youngsoo Jung,&nbsp;Doh-Kwon Lee,&nbsp;Jung-Kun Lee","doi":"10.1002/eom2.12456","DOIUrl":"10.1002/eom2.12456","url":null,"abstract":"<p>Formamidinium lead iodide (FAPbI<sub>3</sub>) and SnO<sub>2</sub> are a promising pair of halide perovskite and electron transport layer (ETL). However, FAPbI<sub>3</sub> and SnO<sub>2</sub> have inherent problems such as high crystallization temperature of FAPbI<sub>3</sub> and surface defects of SnO<sub>2</sub> like oxygen vacancies. They cause low crystallinity, non-uniform grain growth, and more interface defects, leading to carrier recombination and leakage current. The passivation of the interface between FAPbI<sub>3</sub> and SnO<sub>2</sub> is an effective process to address these materials issues. Herein, a dual role of lead sulfide (PbS) quantum dots (QDs) in the interface passivation is explored. PbS QDs which are introduced to the interface between FAPbI<sub>3</sub> and ETL, link to Sn-dangling bonds of SnO<sub>2</sub> ETLs and anchor the iodine atoms of FAPbI<sub>3</sub>. This changes considerably lower nonradiative recombination, achieve a better energetic alignment between ETL and PbI<sub>3</sub>, and facilitate electron extraction, leading to a power conversion efficiency of 21.66%.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12456","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141254624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信