EcoMat最新文献

筛选
英文 中文
PTAA-infiltrated thin-walled carbon nanotube electrode with hidden encapsulation for perovskite solar cells 用于过氧化物太阳能电池的具有隐藏封装功能的 PTAA 注入式薄壁碳纳米管电极
IF 10.7
EcoMat Pub Date : 2024-10-30 DOI: 10.1002/eom2.12495
Eun Chong Chae, You-Hyun Seo, Bong Joo Kang, Jin Ho Oh, Yeonsu Jung, Jinho Jang, Taehoon Kim, Yong-Ryun Jo, Dong Jun Kim, Taek-Soo Kim, Sang Hyuk Im, Sae Jin Sung, Seong Sik Shin, Soonil Hong, Nam Joong Jeon
{"title":"PTAA-infiltrated thin-walled carbon nanotube electrode with hidden encapsulation for perovskite solar cells","authors":"Eun Chong Chae,&nbsp;You-Hyun Seo,&nbsp;Bong Joo Kang,&nbsp;Jin Ho Oh,&nbsp;Yeonsu Jung,&nbsp;Jinho Jang,&nbsp;Taehoon Kim,&nbsp;Yong-Ryun Jo,&nbsp;Dong Jun Kim,&nbsp;Taek-Soo Kim,&nbsp;Sang Hyuk Im,&nbsp;Sae Jin Sung,&nbsp;Seong Sik Shin,&nbsp;Soonil Hong,&nbsp;Nam Joong Jeon","doi":"10.1002/eom2.12495","DOIUrl":"https://doi.org/10.1002/eom2.12495","url":null,"abstract":"<p>In perovskite solar cells (PSCs), expensive gold or silver metal has traditionally been utilized as the rear electrode for highly efficient performance. In this context, carbon nanotube (CNT) electrodes have been considered promising rear electrodes because of their excellent electrical conductivity, mechanical strength, and chemical stability in PSCs. Despite these favorable characteristics, concerns have been raised about the power conversion efficiency (PCE) and stability of PSCs based on CNTs due to the porosity of CNT electrodes. In this study, we employed both poly(triarylamine) (PTAA) infiltration and rear electrode hidden encapsulation approaches to address issues related to the porosity of thin-walled carbon nanotube (TWCNT) electrodes to achieve high efficiency and stability. The infiltration of low-molecular-weight PTAA into the TWCNT electrode reduced electrode porosity while simultaneously improving the interfacial contact of the TWCNT layer with the perovskite layer. Furthermore, a novel encapsulation design was employed to prevent air and water exposure of the TWCNT electrode, which significantly enhanced device stability. PSCs with TWCNT rear electrodes developed on the basis of these strategies have the best PCE of 19.5% and show long-term stability, retaining 96% and 74% of the initial PCE after 225 h at maximum power point tracking under AM 1.5G illumination and 916 h at 85°C/85% relative humidity, respectively.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 11","pages":""},"PeriodicalIF":10.7,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12495","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Halogen-free solvent processed organic solar sub-modules (≈55 cm2) with 14.70% efficiency by controlling the morphology of alkyl chain engineered polymer donor 通过控制烷基链工程聚合物供体的形态,无卤素溶剂加工的有机太阳能子模块(≈55 cm2)效率达到 14.70
IF 10.7
EcoMat Pub Date : 2024-10-27 DOI: 10.1002/eom2.12496
Thavamani Gokulnath, Hyerin Kim, Donghyun Song, Ho-Yeol Park, Je-Sung Jee, Young Yong Kim, Jinhwan Yoon, Kakaraparthi Kranthiraja, Sung-Ho Jin
{"title":"Halogen-free solvent processed organic solar sub-modules (≈55 cm2) with 14.70% efficiency by controlling the morphology of alkyl chain engineered polymer donor","authors":"Thavamani Gokulnath,&nbsp;Hyerin Kim,&nbsp;Donghyun Song,&nbsp;Ho-Yeol Park,&nbsp;Je-Sung Jee,&nbsp;Young Yong Kim,&nbsp;Jinhwan Yoon,&nbsp;Kakaraparthi Kranthiraja,&nbsp;Sung-Ho Jin","doi":"10.1002/eom2.12496","DOIUrl":"https://doi.org/10.1002/eom2.12496","url":null,"abstract":"<p>Goals of high efficiency, morphological analysis, and the ability to produce organic solar cell (OSC) sub-modules using halogen-free solvents are demanding. In this study, a robust conjugated polymer with thienothiophene π-spacer with pendant alkyl side chain (NapBDT-C12) was synthesized and used to fabricate sub-modules. Excellent efficiencies were demonstrated by a NapBDT-C12 integrated ternary blend, which was used to produce stable small-area-to-sub-module devices using <i>O</i>-xylene. The efficiency of the NapBDT-C12 added small-area ternary devices (PM6:NapBDT-C12:L8-BO) was 18.71%. Owing to the controlled homogeneity of the blend with favorable nanoscale film morphology, enhanced carrier mobilities, and exciton dissociation/splitting properties, contributed to the efficiencies of small-area-to-sub-module OSCs. Moreover, a 55 cm<sup>2</sup> sub-module with an efficiency of 14.69% was accomplished by bar coating using <i>O</i>-xylene under ambient conditions. This study displays the potential of a ternary blend based OSC device to produce high efficiency scalable sub-modules at ambient conditions.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 11","pages":""},"PeriodicalIF":10.7,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12496","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Minimizing voltage losses in Sn perovskite solar cells by Cs2SnI6 passivation 通过钝化 Cs2SnI6 使锡过氧化物太阳能电池的电压损失最小化
IF 10.7
EcoMat Pub Date : 2024-10-21 DOI: 10.1002/eom2.12491
Jin Hyuck Heo, Sang Woo Park, Hyong Joon Lee, Jin Kyoung Park, Sang Hyuk Im, Ki-Ha Hong
{"title":"Minimizing voltage losses in Sn perovskite solar cells by Cs2SnI6 passivation","authors":"Jin Hyuck Heo,&nbsp;Sang Woo Park,&nbsp;Hyong Joon Lee,&nbsp;Jin Kyoung Park,&nbsp;Sang Hyuk Im,&nbsp;Ki-Ha Hong","doi":"10.1002/eom2.12491","DOIUrl":"https://doi.org/10.1002/eom2.12491","url":null,"abstract":"<p>Stability and oxidation are major bottlenecks in improving the performance of Sn-based perovskite solar cells. In this study, we present the formation of an n-type Cs<sub>2</sub>SnI<sub>6</sub> double-perovskite (Sn-DP) layer on a (PEAI)<sub>0.15</sub>(FAI)<sub>0.85</sub>SnI<sub>2</sub> perovskite (Sn-P) layer using an orthogonal solution-processable spray-coating method. This novel approach achieves a minimized <i>V</i><sub>oc</sub> loss of 0.38 V and a PCE of 12.9% under 1 sun conditions. The n-type DP layer effectively passivates tin vacancies, suppresses Sn<sup>2+</sup> oxidation, reduces defects, and enhances electron extraction. Furthermore, the Sn-DP/Sn-P-based solar cells exhibit excellent light-soaking stability for 1000 h in the air under continuous one sun illumination, which is attributed to the stable Sn<sup>4+</sup> state of the DP layer. Our experimental and theoretical investigations reveal that the type-II band alignment between Sn-DP and Sn-P enhances the stability of the solar cells. The proposed Sn-DP/Sn-P architecture offers a promising pathway for developing Sn-based solar cells.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 11","pages":""},"PeriodicalIF":10.7,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12491","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization strategy of triboelectric nanogenerators for high humidity environment service performance 针对高湿度环境服务性能的三电纳米发电机优化策略
IF 10.7
EcoMat Pub Date : 2024-10-19 DOI: 10.1002/eom2.12493
Xichen Yin, Zhou Chen, Hui Chen, Qing Wang, Qian Chen, Cheng Wang, Chaoyue Ye
{"title":"Optimization strategy of triboelectric nanogenerators for high humidity environment service performance","authors":"Xichen Yin,&nbsp;Zhou Chen,&nbsp;Hui Chen,&nbsp;Qing Wang,&nbsp;Qian Chen,&nbsp;Cheng Wang,&nbsp;Chaoyue Ye","doi":"10.1002/eom2.12493","DOIUrl":"https://doi.org/10.1002/eom2.12493","url":null,"abstract":"<p>With triboelectric nanogenerators (TENGs) introduced in 2012, they have emerged in the fields of flexible wearable electronics, portable energy, Internet of Things (IoTs), and biomedicine by virtue of their lightweight, high-energy conversion, low cost, and material selectivity. However, as the application areas of TENGs increase, ambient humidity and human movement generate sweat and moisture that can lead to a decrease in output, so exploring how TENGs operate in high humidity environments is critical to their long-term development. In this paper, different strategies are introduced to enhance TENGs in high humidity environments, such as encapsulation, construction of hydrophobic/superhydrophobic surfaces, and hydrogen bonding enhancement, and discuss the applications of humidity-resistant TENGs in fields such as self-powered sensors, energy harvesters, and motions, and so forth. Finally, we explore the future directions and routes for the development of humidity-resistant TENGs.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 11","pages":""},"PeriodicalIF":10.7,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12493","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pt and Pt-group transition metal 0D vacancy ordered halide perovskites: A review 铂族和铂族过渡金属 0D 空位有序卤化物过磷酸盐:综述
IF 10.7
EcoMat Pub Date : 2024-10-16 DOI: 10.1002/eom2.12492
Huilong Liu, Shubhra Bansal
{"title":"Pt and Pt-group transition metal 0D vacancy ordered halide perovskites: A review","authors":"Huilong Liu,&nbsp;Shubhra Bansal","doi":"10.1002/eom2.12492","DOIUrl":"https://doi.org/10.1002/eom2.12492","url":null,"abstract":"<p>Lead halide perovskites (LHPs), have attracted considerable attention across various applications owing to their exceptional optoelectronic properties. However, the main challenge hindering the broad adoption of lead halide perovskites lies in their stability and toxicity. In this review, we summarize the outstanding properties of platinum (Pt) halide perovskites, with a particular focus on the stability and applications of Cs<sub>2</sub>PtI<sub>6</sub> and its derivatives. Cs<sub>2</sub>PtI<sub>6</sub> has shown promising efficiency for photovoltaic devices, as well as photoelectrochemical water splitting with stable behavior in acid or basic conditions. Cs<sub>2</sub>PtI<sub>6</sub> also shows promise in gas sensing and thermoelectric devices. The emergence of 2D Pt (II) halide perovskites opens up new avenues for environmentally friendly materials for photonic and optoelectronic devices like room temperature phosphoresce and triplet-triplet annihilation (TTA) based up-conversion.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 11","pages":""},"PeriodicalIF":10.7,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12492","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical recycling of lithium-ion batteries: Advancements and future directions 锂离子电池的电化学回收:进展与未来方向
IF 10.7
EcoMat Pub Date : 2024-10-13 DOI: 10.1002/eom2.12494
Stefanie Arnold, Jean G. A. Ruthes, Choonsoo Kim, Volker Presser
{"title":"Electrochemical recycling of lithium-ion batteries: Advancements and future directions","authors":"Stefanie Arnold,&nbsp;Jean G. A. Ruthes,&nbsp;Choonsoo Kim,&nbsp;Volker Presser","doi":"10.1002/eom2.12494","DOIUrl":"https://doi.org/10.1002/eom2.12494","url":null,"abstract":"<p>Lithium-ion batteries (LIBs) are at the forefront of technological innovation in the current global energy-transition paradigm, driving surging demand for electric vehicles and renewable energy-storage solutions. Despite their widespread use and superior energy densities, the environmental footprint and resource scarcity associated with LIBs necessitate sustainable recycling strategies. This comprehensive review critically examines the existing landscape of battery recycling methodologies, including pyrometallurgical, hydrometallurgical, and direct recycling techniques, along with emerging approaches such as bioleaching and electrochemical separation. Our analysis not only underscores the environmental and efficiency challenges posed by conventional recycling methods but also highlights the promising potential of electrochemical techniques for enhancing selectivity, reducing energy consumption, and mitigating secondary waste production. By delving into recent advancements and juxtaposing various recycling methodologies, we pinpoint electrochemical recycling as a pivotal technology for efficiently recovering valuable metals, such as Li, Ni, Co, and Mn, from spent LIBs in an environmentally benign manner. Our discussion extends to the scalability, economic viability, and future directions of electrochemical recycling, and advocates for their integration into global battery-recycling infrastructure to address the dual challenges of resource depletion and environmental sustainability.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 11","pages":""},"PeriodicalIF":10.7,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12494","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced approach for active and durable proton exchange membrane fuel cells: Coupling synergistic effects of MNC nanocomposites 活性持久质子交换膜燃料电池的先进方法:MNC 纳米复合材料的耦合协同效应
IF 10.7
EcoMat Pub Date : 2024-10-09 DOI: 10.1002/eom2.12488
Yeju Jang, Seung Yeop Yi, Jinwoo Lee
{"title":"Advanced approach for active and durable proton exchange membrane fuel cells: Coupling synergistic effects of MNC nanocomposites","authors":"Yeju Jang,&nbsp;Seung Yeop Yi,&nbsp;Jinwoo Lee","doi":"10.1002/eom2.12488","DOIUrl":"https://doi.org/10.1002/eom2.12488","url":null,"abstract":"<p>Atomically dispersed metal and nitrogen co-doped carbon (M<span></span>N<span></span>C) is a promising oxygen reduction reaction (ORR) catalyst for electrochemical energy storage and conversion applications but typically suffers from low durability and activity under the acidic conditions of practical polymer electrolyte exchange membrane fuel cells (PEMFCs). Recently, the performance of M<span></span>N<span></span>C nanocomposites under acidic ORR conditions has been enhanced by exploiting the synergistic coupling effects of their constituents (single-atom sites, nanoclusters, and nanoparticles). The unique geometric structures formed by the coupling of diverse sites in these nanocomposites provide optimal electronic structures and efficient reaction pathways, thus resulting in high activity and long-term durability. This work provides an overview of M<span></span>N<span></span>C nanocomposites as ORR electrocatalysts under practical PEMFC conditions, focusing on activity and durability enhancement methods and highlighting the strategies used to prepare electrocatalytically efficient M<span></span>N<span></span>C nanocomposites containing no or low amounts of platinum group metals. Progress in the development of advanced M<span></span>N<span></span>C nanocomposites as acidic ORR catalysts is discussed, and the pivotal role of synergistic effects resulting from the coupling sites within the nanocomposites is explored together with the characterization methods used to elucidate these effects. Finally, the challenges and prospects of developing M<span></span>N<span></span>C nanocomposites as next-generation electrocatalysts are presented.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 10","pages":""},"PeriodicalIF":10.7,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12488","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142447756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From Pb-based MAPbI3−xClx to Pb-free FASnI3−xClx and CsSbCl4 derivatives fabrication in atmospheric conditions for optoelectronic and solar cell applications 在大气条件下从铅基 MAPbI3-xClx 到无铅 FASnI3-xClx 和 CsSbCl4 衍生物的制造,用于光电和太阳能电池应用
IF 10.7
EcoMat Pub Date : 2024-10-07 DOI: 10.1002/eom2.12489
M. Kamruzzaman, Md. Faruk Hossain, J. Antonio Zapien, A. M. M. Tanveer Karim, H. N. Das, M. A. Helal
{"title":"From Pb-based MAPbI3−xClx to Pb-free FASnI3−xClx and CsSbCl4 derivatives fabrication in atmospheric conditions for optoelectronic and solar cell applications","authors":"M. Kamruzzaman,&nbsp;Md. Faruk Hossain,&nbsp;J. Antonio Zapien,&nbsp;A. M. M. Tanveer Karim,&nbsp;H. N. Das,&nbsp;M. A. Helal","doi":"10.1002/eom2.12489","DOIUrl":"https://doi.org/10.1002/eom2.12489","url":null,"abstract":"<p>MAPbI<sub>3</sub> is the most attractive perovskite, but toxicity and instability issues hinder its commercial applications. Stability can be improved by halide mixing; however, Pb-free perovskites are designed to alleviate the toxicity and to enable green photovoltaics (PVs). To this end, MAPbI<sub>3-x</sub>Cl<sub>x</sub>, FASnI<sub>3-x</sub>Cl<sub>x</sub> and CsSbCl<sub>4</sub> films are deposited by spay pyrolysis technique in atmospheric conditions. SEM images demonstrated that through this process, high quality film fabrication is possible. Color of the precursor solutions changes with stirring time. High crystallinity and existence of mixed-phases are confirmed by XRD analysis. Compositions greatly impact the morphology and optical properties. Value of α is larger than 10<sup>5</sup> cm<sup>−1</sup> for all films. Band gaps of FASnI<sub>3-x</sub>Cl<sub>x</sub> and CsSbCl<sub>4</sub> are 1.46 eV and 1.52 eV, which are more suitable for PVs, optoelectronic applications than MAPbI<sub>3-x</sub>Cl<sub>x</sub> (E<sub>g</sub> = 1.59 eV). The efficiency was obtained as 16.34%, 9.90%, and 13.08% for deposited MAPbI<sub>3-x</sub>Cl<sub>x</sub>, FASnI<sub>3-x</sub>Cl<sub>x</sub>, and CsSbCl<sub>4</sub> films. The lower efficiency can further be enhanced by optimizing parameters, and in this study it was found as 20.78%, 11.93%, and 18.02%. Theoretical calculations show the films can easily produce O<sub>2</sub> by a strong oxidation process. Thus, the favorable characteristics of FASnI<sub>3-x</sub>Cl<sub>x</sub> and CsSbCl<sub>4</sub> make alternative Pb-free perovskites for PV, electronic, and optoelectronic applications.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 10","pages":""},"PeriodicalIF":10.7,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12489","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142449040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Minimizing perovskite solar cells' lead leakage with a cost-effective and 160 days stable encapsulant 用一种成本效益高、160 天稳定的封装剂最大限度地减少过氧化物太阳能电池的铅泄漏
IF 10.7
EcoMat Pub Date : 2024-10-06 DOI: 10.1002/eom2.12490
Haoxuan Liu, Can Li, Zongxu Zhang, Yating Shi, Fei Zhang
{"title":"Minimizing perovskite solar cells' lead leakage with a cost-effective and 160 days stable encapsulant","authors":"Haoxuan Liu,&nbsp;Can Li,&nbsp;Zongxu Zhang,&nbsp;Yating Shi,&nbsp;Fei Zhang","doi":"10.1002/eom2.12490","DOIUrl":"https://doi.org/10.1002/eom2.12490","url":null,"abstract":"<p>Perovskite solar cells' (PSCs) potential lead leakage seriously threatens ecosystems and human health, significantly hindering their commercialization. In this paper, we develope a cost-effective (less than 2$/m<sup>2</sup>) and long-term stable SSP film by mixing sulfonated SiO<sub>2</sub> with polyvinyl alcohol (PVA). Combined with polydimethylsiloxane (PDMS) forming the encapsulation layer, it can effectively prevent over 99% of lead leakage under simulated adverse weather conditions with different structures of devices (p-i-n and n-i-p) and modules. Even after 160 days of air storage, the film maintains excellent lead sequestration efficiency. Additionally, it has no negative impact on the performance and stability. This work offers a practical and economical strategy to mitigate the toxicity of perovskite photovoltaic devices, thereby promoting their commercialization.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 11","pages":""},"PeriodicalIF":10.7,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12490","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient and spectrally stable pure blue light-emitting diodes enabled by phosphonate passivated CsPbBr3 nanoplatelets with conjugated polyelectrolyte-based energy transfer layer 具有共轭聚电解质能量转移层的膦酸盐钝化 CsPbBr3 纳米微晶实现高效、光谱稳定的纯蓝光发光二极管
IF 10.7
EcoMat Pub Date : 2024-09-29 DOI: 10.1002/eom2.12487
Jinu Park, Hyunjin Cho, Joonyun Kim, Yu-Ching Huang, Nakyung Kim, Seoyeon Park, Yunna Kim, Sukki Lee, Jiyoung Kwon, Doh C. Lee, Byungha Shin
{"title":"Efficient and spectrally stable pure blue light-emitting diodes enabled by phosphonate passivated CsPbBr3 nanoplatelets with conjugated polyelectrolyte-based energy transfer layer","authors":"Jinu Park,&nbsp;Hyunjin Cho,&nbsp;Joonyun Kim,&nbsp;Yu-Ching Huang,&nbsp;Nakyung Kim,&nbsp;Seoyeon Park,&nbsp;Yunna Kim,&nbsp;Sukki Lee,&nbsp;Jiyoung Kwon,&nbsp;Doh C. Lee,&nbsp;Byungha Shin","doi":"10.1002/eom2.12487","DOIUrl":"https://doi.org/10.1002/eom2.12487","url":null,"abstract":"<p>Lead halide perovskites exhibit a very wide color gamut due to their extremely narrow emission spectra, typically characterized by a full-width at half-maximum (FWHM) of less than 20 nm. Significant advancements have been made in developing highly efficient and stable green, red, and near-infrared perovskite light-emitting diodes (PeLEDs). However, achieving efficient and stable pure blue-emitting PeLEDs remains a significant challenge. In this work, we successfully synthesized monoanionic octyl-phosphonate capped CsPbBr<sub>3</sub> nanoplatelets (OPA-NPLs) using a combination of octyl-phosphonic acid and oleylamine at room temperature, diverging from common approaches that necessitate complex high-temperature methods, such as hot injection, to accommodate short-chain ligands. The OPA-NPLs exhibit pure blue photoluminescence at 462 nm with a FWHM of 14 nm. Compared with CsPbBr<sub>3</sub> nanoplatelets synthesized using oleic acid, OPA-NPLs demonstrate significantly improved thermal stability and higher photoluminescence quantum yield (PLQY) of 90%. Additionally, we introduced Poly[(9,9-bis(3′-((<i>N,N</i>-dimethyl)-<i>N</i>-ethylammonium)-propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)]dibromide (PFN-Br), a conjugated polyelectrolyte material, as a hole transport layer. This facilitated energy transfer between PFN-Br and the CsPbBr<sub>3</sub> nanoplatelets. The resulting device demonstrated an electroluminescence peak at 462 nm, an extremely narrow FWHM of 14 nm, and a maximum external quantum efficiency (EQE) of 4%. Notably, the device maintained pure blue emission without spectral peak shift even during degradation caused by excess joule heating.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 10","pages":""},"PeriodicalIF":10.7,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12487","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142447813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信