{"title":"Scalable Hierarchical-Colored Passive Cooling Metapaint for Outdoor Facility","authors":"Maiping Yang, Zikang Zhou, Mingxiang Liu, Jiawei Wu, Jiaxin Li, Jun Liang, Shiliang Zhang, Mingyue Chen, Hongtao Zeng, Xiaofeng Li, Hao Han, Chong Hou, Guangming Tao","doi":"10.1002/eom2.12509","DOIUrl":"https://doi.org/10.1002/eom2.12509","url":null,"abstract":"<p>The temperature of metal-based facilities rises significantly under high outdoor solar irradiation, leading to serious safety accidents. The application of active cooling technology poses challenges due to its high energy consumption, especially in complex outdoor environments. Passive cooling devices with high solar reflection and thermal emission can continuously cool objects under sunlight. However, the white or silvery passive cooling devices do not meet the need for aesthetics and specific demands. Here, we present a hierarchical metapaint for outdoor facilities that simultaneously achieve vibrant color and passive cooling ability. The top layer selectively absorbs visible wavelengths to display desired colors, while the underlayer boosts the reflection of near-to-short wavelength infrared (NSWIR) light to prevent solar heating. The metapaint-coated metal is resistant to high and low temperatures, acidic and alkaline environments, and simulated seawater. It also has satisfactory anti-fouling properties. When compared to metal coated without commercial paint, the hierarchical passive cooling paint (metapaint) coated metal can cool up to 9.7°C and 17.1°C. The metapaint has excellent passive cooling performance, attributed to its broad-spectrum selective regulation function. Our work offers a simple, inexpensive, and scalable approach to reduce cooling energy usage and promote a low-carbon lifestyle.</p><p>\u0000 \u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"7 1","pages":""},"PeriodicalIF":10.7,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12509","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143114473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EcoMatPub Date : 2024-12-10DOI: 10.1002/eom2.12510
Yuri Jeon, Jury Medvedev, Yeeun Seong, Xenia Medvedeva, Cheongwon Bae, Jeongeon Kim, Anna Klinkova, Juyeong Kim
{"title":"Enhanced Urea Oxidation Reaction Through Layered Double Hydroxides: Insights From ZIF-67-Derived Nanostructures","authors":"Yuri Jeon, Jury Medvedev, Yeeun Seong, Xenia Medvedeva, Cheongwon Bae, Jeongeon Kim, Anna Klinkova, Juyeong Kim","doi":"10.1002/eom2.12510","DOIUrl":"https://doi.org/10.1002/eom2.12510","url":null,"abstract":"<p>Layered double hydroxides (LDHs) are ionic layered compounds characterized by anion-containing intermediate regions within positively charged brucite-like layers. LDHs have shown high electrochemical activity in energy conversion systems such as batteries and fuel cells. In this study, we developed a hierarchically porous nanostructure derived from zeolitic imidazolate framework-67, which was subsequently transformed into an LDH structure with varying Ni concentrations. We precisely controlled the Ni-to-Co ratio within the LDH structure and investigated how different mole fractions of Co and Ni influence catalytic activity and selectivity for the electrochemical urea oxidation reaction (UOR). LDH structures with low Ni content (up to 40%) demonstrated high activity and selectivity for O<sub>2</sub> due to their structural instability and the predominant oxygen evolution reaction (OER) originating from ZIF-67. In contrast, LDHs with high Ni content (over 60%) supressed OER and exhibited enhanced activity for UOR. The resulting hollow structure with an expanded electrochemically active surface in LDHs with high Ni content could improve mass transport and diffusion at the electrode interface, leading to better reaction kinetics and higher current densities. These findings provide a foundational design guideline for metal–organic framework-derived nanostructure in UOR.</p><p>\u0000 \u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"7 1","pages":""},"PeriodicalIF":10.7,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12510","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143113871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EcoMatPub Date : 2024-12-04DOI: 10.1002/eom2.12508
Jin Kyoung Park, Yunmi Song, Hyong Joon Lee, Kyung Ho Kim, Jin Hyuck Heo, Sang Hyuk Im
{"title":"Enhancing FAPbI3 Perovskite Solar Cell Performance and Stability Through Bespoke Graphene Quantum Dots","authors":"Jin Kyoung Park, Yunmi Song, Hyong Joon Lee, Kyung Ho Kim, Jin Hyuck Heo, Sang Hyuk Im","doi":"10.1002/eom2.12508","DOIUrl":"https://doi.org/10.1002/eom2.12508","url":null,"abstract":"<p>A novel approach to enhancing the efficiency and long-term stability of perovskite solar cells (PSCs) is presented through strategic interfacial modification using bespoke graphene quantum dots (GQDs). GQDs with controlled alkylamine chain lengths, such as butylamine (C4), octylamine (C8), and dodecylamine (C12), were customized to have the proper optical and electronic properties toward specific interfaces within the PSCs. The incorporation of C4-GQDs significantly improved the energy level alignment and conductivity of the SnO<sub>2</sub> electron transport layer (ETL), while C12-GQDs effectively reduced trap density on the perovskite surface, leading to enhanced defect passivation. These modifications resulted in a substantial increase in power conversion efficiency of 24.41% in a unit cell and 18.91% in a mini-module, respectively. Notably, the maximum power point tracked perovskite mini-module retained 89% of its initial efficiency during 1000 h of continuous light soaking condition at 25°C under 35% relative humidity. This work highlights the potential of bespoke GQDs to advance both the performance and durability of PSCs, providing a scalable approach for future photovoltaic applications.</p><p>\u0000 \u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"7 1","pages":""},"PeriodicalIF":10.7,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12508","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143111690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Fully Degradable, Bio-Safe Supercapacitor Targeting for Harmless Disposal of Energy Storage Devices","authors":"Chang Xu, Shiqiang Guan, Xijing Zhuang, Xufeng Dong","doi":"10.1002/eom2.12506","DOIUrl":"https://doi.org/10.1002/eom2.12506","url":null,"abstract":"<p>Supercapacitors show broad application prospects as promising energy supply units for future integrated or even implantable electronic devices, but their poor degradability and high biotoxicity severely limit their further development. Regarding this, future-oriented supercapacitors with fully degradable behavior and excellent biosafety have been prepared through the wide application of degradable polymers and a rational encapsulation and isolation strategy. The combination of self-supporting pulp fiber/graphene composite electrodes and guar gum gel electrolyte endows the devices with ideal rate performance and long lifetime. The devices demonstrate extremely low cytotoxicity and satisfactory biocompatibility. The implantation caused no significant rejection and did not affect the survival status of the SD rats, suggesting the possibility of powering implantable electronics. Notably, all components of the device (electrodes, electrolyte, substrate, and encapsulation materials) do not contain hazardous or non-degradable materials, allowing for true complete degradability. The preparation strategy and material selection in the study are expected to be generalized to a wide range of energy storage systems, providing some reference and guidance for the harmless disposal of energy storage devices and even microelectronics.</p><p>\u0000 \u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"7 1","pages":""},"PeriodicalIF":10.7,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12506","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143111284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EcoMatPub Date : 2024-11-24DOI: 10.1002/eom2.12505
Idris Temitope Bello, Hassan Raza, Alabi Tobi Michael, Madithedu Muneeswara, Neha Tewari, Wang Bingsen, Yin Nee Cheung, Zungsun Choi, Steven T. Boles
{"title":"Charging Ahead: The Evolution and Reliability of Nickel-Zinc Battery Solutions","authors":"Idris Temitope Bello, Hassan Raza, Alabi Tobi Michael, Madithedu Muneeswara, Neha Tewari, Wang Bingsen, Yin Nee Cheung, Zungsun Choi, Steven T. Boles","doi":"10.1002/eom2.12505","DOIUrl":"https://doi.org/10.1002/eom2.12505","url":null,"abstract":"<p>Nickel-Zinc (Ni-Zn) batteries offer an interesting alternative for the expanding electrochemical energy storage industry due to their high-power density, low cost, and environmental friendliness. However, significant reliability challenges such as capacity fading, self-discharge, thermal instability, and electrode degradation detract from their competitiveness in the market, hindering their widespread adoption. This study thoroughly examines the degradation mechanisms and approaches to improve the reliability of Ni-Zn batteries: Starting with their basic chemistry, operating principles, and degradation pathways, strategies for improvement are explored including material modification, electrolyte optimization, cell design approaches, and thermal management techniques. Advanced characterization methods for data collection and reliability assessment are discussed, including electrochemical, structural, spectroscopic, and in situ techniques which are noted for their ability to identify key areas of concern for this cell chemistry. We further consider emerging trends such as novel materials, hybridization with other energy technologies, and the challenges of large-scale implementation, emphasizing the need for standardized reliability testing protocols. Opportunities for the integration of advanced sensing, such as fiber Bragg grating (FBG) sensors for real-time monitoring and anomaly detection, along with machine learning (ML) and prognostics and health management of Ni-Zn batteries are highlighted, as these open the door to future research directions. This comprehensive review should serve as a resource for researchers, engineers, and industry experts aiming to advance and commercialize dependable, high-performing Ni-Zn battery technology for a sustainable energy future.</p><p>\u0000 \u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"7 1","pages":""},"PeriodicalIF":10.7,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12505","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143118843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EcoMatPub Date : 2024-11-14DOI: 10.1002/eom2.12504
Hak Hyeon Lee, Ji Hoon Choi, Dong Su Kim, Sungho Jeon, Eric A. Stach, Hyung Koun Cho
{"title":"Electrochemical Glycerol Valorization Using Tolerant Pt Embedded Bi Platform Electrocatalysts Derived From Photoactive Bismuth Oxyiodide Nanosheet Intermediates","authors":"Hak Hyeon Lee, Ji Hoon Choi, Dong Su Kim, Sungho Jeon, Eric A. Stach, Hyung Koun Cho","doi":"10.1002/eom2.12504","DOIUrl":"https://doi.org/10.1002/eom2.12504","url":null,"abstract":"<p>Pt-based electrocatalysts for glycerol oxidation reaction (GOR) exhibit low durability due to the inactivation of Pt through rapid poisoning under oxidative conditions. Thus, bimetallic PtBi was strategically synthesized using BiOI as a photoactive intermediate for the uniform photoelectrodeposition of Pt. The nanostructured Pt–Bi was electrochemically reduced from a Pt/BiOI medium, and the GOR-activated Pt–Bi electrocatalysts (G–Pt–Bi) were obtained via a subsequent electrochemical activation process. Here, abundant Bi sites in PtBi can prevent Pt poisoning and effectively provide adsorbed OH<sup>−</sup> for the GOR on Pt sites. Consequently, it allows the operation in low onset potential for GOR with a high mass activity of 13.35 A mg<sub>Pt</sub>\u0000 <sup>−1</sup> at 0.85 V<sub>RHE</sub> in alkaline solution. The GOR products obtained using G–Pt–Bi were identified as glycolate and formate by <sup>1</sup>H-nuclear magnetic resonance without the interruption of the hydrogen evolution reaction, and it finally enables the operation of a membrane-free two-electrode system. In situ electrochemical impedance spectroscopy demonstrates that the G–Pt–Bi exhibit superior GOR kinetics and higher resistance to Pt inactivation compared with conventional Pt/C. This study suggests a novel design for a G–Pt–Bi architecture in developing durable and high-mass-activity Pt catalysts for the GOR.</p><p>\u0000 \u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 12","pages":""},"PeriodicalIF":10.7,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12504","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A universal reverse-cool annealing strategy makes two-dimensional Ruddlesden-popper perovskite solar cells stable and highly efficient with Voc exceeding 1.2 V","authors":"Zhongqi Xie, Huiming Luo, Qing-Song Jiang, Ya Zhao, Yong Peng, Ligang Yuan, Keyou Yan, Mojtaba Abdi-Jalebi","doi":"10.1002/eom2.12501","DOIUrl":"https://doi.org/10.1002/eom2.12501","url":null,"abstract":"<p>Two-dimensional Ruddlesden-Popper (2D RP) layered metal-halide perovskites have garnered increasing attention due to their favorable optoelectronic properties and enhanced stability in comparison to their three-dimensional counterparts. Nevertheless, precise control over the crystal orientation of 2D RP perovskite films remains challenging, primarily due to the intricacies associated with the solvent evaporation process. In this study, we introduce a novel approach known as reverse-cool annealing (RCA) for the fabrication of 2D RP perovskite films. This method involves a sequential annealing process at high and low temperatures for wet perovskite films. The resulting RCA-based perovskite films show the smallest root-mean-square value of 23.1 nm, indicating a minimal surface roughness and a notably compact and smooth surface morphology. The low defect density in these 2D RP perovskite films with exceptional crystallinity suppresses non-radiative recombination, leading to a minimal non-radiative open-circuit voltage loss of 149 mV. Moreover, the average charge lifetime in these films is extended to 56.3 ns, thanks to their preferential growth along the out-of-plane direction. Consequently, the leading 2D RP perovskite solar cell achieves an impressive power conversion efficiency of 17.8% and an open-circuit voltage of 1.21 V. Additionally, the stability of the 2D RP perovskite solar cell, even without encapsulation, exhibits substantial improvement, retaining 97.4% of its initial efficiency after 1000 hours under a nitrogen environment. The RCA strategy presents a promising avenue for advancing the commercial prospects of 2D RP perovskite solar cells.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 12","pages":""},"PeriodicalIF":10.7,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12501","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EcoMatPub Date : 2024-11-13DOI: 10.1002/eom2.12503
Seung Ho Kwon, Seongmin Kim, Jinseok Park, Michael J. Lee, Youyoung Byun, Hyun Jung Kim, Young Min Baek, Jaegyeom Kim, Eunji Lee, Seung Woo Lee, Bumjoon J. Kim
{"title":"In-situ photo-polymerized elastomeric composite electrolytes containing Li6.4La3Zr1.4Ta0.6O12 particles for stable operation in lithium metal batteries","authors":"Seung Ho Kwon, Seongmin Kim, Jinseok Park, Michael J. Lee, Youyoung Byun, Hyun Jung Kim, Young Min Baek, Jaegyeom Kim, Eunji Lee, Seung Woo Lee, Bumjoon J. Kim","doi":"10.1002/eom2.12503","DOIUrl":"https://doi.org/10.1002/eom2.12503","url":null,"abstract":"<p>Composite polymer electrolytes (CPEs), produced by incorporating inorganic nanoparticles (NPs) into polymer matrices, have gained significant attention as promising candidates for solid-state lithium metal batteries (LMBs). However, the aggregation of dense inorganic fillers results in nonuniform CPEs, thereby impeding LMB performance. Here, we fabricated in-situ photo-polymerized CPEs by incorporating different weight ratios (0–20 wt%) of Li<sub>6.4</sub>La<sub>3</sub>Zr<sub>1.4</sub>Ta<sub>0.6</sub>O<sub>12</sub> (LLZTO) into a polymer electrolyte system composed of poly(butyl acrylate)-based elastomer and succinonitrile-based plastic crystal phases. The rapid photo-polymerization process (~5 min) enabled homogeneous dispersion of LLZTO within the CPE matrix at 10 wt% LLZTO (L10), resulting in the high ionic conductivity (1.02 mS cm<sup>−1</sup> at 25°C) and mechanical elasticity (elongation at break ≈ 1250%) compared to those of CPE without LLZTO (L0). As a result, the L10-based LMB with a LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> cathode exhibited a high capacity of 166.7 mAh g<sup>−1</sup> after 200 cycles at 0.5C, significantly higher than those of L0 (74.0 mAh g<sup>−1</sup>) and L20 (104.8 mAh g<sup>−1</sup>). In comparison, in-situ thermal polymerized CPE with 10 wt% LLZTO NPs showed aggregation of NPs due to slow polymerization kinetics (~2 h), resulting in inferior LMB cycling performance compared to the L10. This work highlights the importance of in-situ photo-polymerized CPEs with homogenous dispersion of inorganic NPs to achieve high ionic conductivity and mechanical robustness suitable for the stable operation of LMBs.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 12","pages":""},"PeriodicalIF":10.7,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12503","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EcoMatPub Date : 2024-11-12DOI: 10.1002/eom2.12502
Youngkwang Jung, You-Yeob Song, Yoon-Seong Kim, Yubin Chung, Dae-Hyung Lee, Sang-Wook Park, Hojoon Kim, Hong-Seok Min, Jesik Park, Juyeong Seong, Sung-Kyun Jung, Dong-Hwa Seo
{"title":"Impact of conducting agents on sulfide and halide electrolytes in disordered rocksalt cathode-based all-solid-state batteries","authors":"Youngkwang Jung, You-Yeob Song, Yoon-Seong Kim, Yubin Chung, Dae-Hyung Lee, Sang-Wook Park, Hojoon Kim, Hong-Seok Min, Jesik Park, Juyeong Seong, Sung-Kyun Jung, Dong-Hwa Seo","doi":"10.1002/eom2.12502","DOIUrl":"https://doi.org/10.1002/eom2.12502","url":null,"abstract":"<p>All-solid-state battery (ASSB) systems have attracted significant attention due to their high energy density and safety compared with conventional batteries. Moreover, the application of Mn-based cation-disordered rock-salt (DRX) that possesses cost-effectiveness and high energy density on the ASSB system as a cathode is expected to be the superior next-generation battery system. However, DRX cathodes require high carbon contents due to their low electronic conductivity, leading to challenges in introducing them in ASSB systems, as the high carbon levels can cause electrolyte decomposition which potentially affects overall electrochemical performance. In this work, we applied Mn-based DRX cathodes to ASSB systems within a voltage range of 1.5–4.8 V and evaluated the suitability of cathode composites using halide and sulfide electrolytes as catholytes, respectively. The experimental results showed that the high carbon contents induced side reactions with the argyrodite, resulting in electrochemical degradation such as the drop of initial discharge voltage and the capacity fading. Meanwhile, cathode composites using a halide electrolyte exhibited relatively enhanced electrochemical performance due to its high oxidation stability regardless of the high amount of carbon contents. Consequently, the electrochemical reactions of the electrolyte, influenced by the content of conductive additives and the type of electrolyte, had a great impact on the performance of ASSB systems. This study provides a deep understanding of the interplaying among solid electrolytes, cathodes, and conductive additives and offers an important foundation for future research and development in ASSB systems.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 12","pages":""},"PeriodicalIF":10.7,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12502","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EcoMatPub Date : 2024-10-30DOI: 10.1002/eom2.12500
Du Hyeon Ryu, Jun Hyung Kim, Jorim Okoth Obila, Hyun-Sung Yun, Seungjin Lee, Bong Joo Kang, Nam Joong Jeon, Ki-Ha Hong, Jaeki Jeong, Sang Hyuk Im, Chang Eun Song
{"title":"Erbium chloride-mediated nucleation/crystallization control for high-performance tin-based perovskite solar cells","authors":"Du Hyeon Ryu, Jun Hyung Kim, Jorim Okoth Obila, Hyun-Sung Yun, Seungjin Lee, Bong Joo Kang, Nam Joong Jeon, Ki-Ha Hong, Jaeki Jeong, Sang Hyuk Im, Chang Eun Song","doi":"10.1002/eom2.12500","DOIUrl":"https://doi.org/10.1002/eom2.12500","url":null,"abstract":"<p>Tin-halide perovskite solar cells (THPSCs), while offering low toxicity and high theoretical power conversion efficiency, suffer from inferior device performance compared to lead-based counterparts. The primary limitations arise from challenges in fabricating high-quality perovskite films and mitigating the oxidation of Sn<sup>2+</sup> ions, which leads to severe non-radiative voltage losses. To address these issues, we incorporate the rare-earth element erbium chloride (ErCl<sub>3</sub>) into PEA<sub>0.15</sub>FA<sub>0.70</sub>EA<sub>0.15</sub>SnI<sub>2.70</sub>Br<sub>0.30</sub> perovskite to effectively control the nucleation and crystal growth, significantly influencing the morphology of the perovskite films. As a result, the ErCl<sub>3</sub>-processed THPSC exhibits an impressive open-circuit voltage (<i>V</i><sub>OC</sub>) of 0.83 V and power conversion efficiency (PCE) of 14.0% with the superior light and air stability, compared to the control device (<i>V</i><sub>OC</sub> = 0.77 V and PCE = 12.8%). This ErCl<sub>3</sub>-strategy provides a feasible solution for high-performance THPSCs by regulating nucleation/crystallization kinetics and mitigating excessive crystal defects during the preparation process of lead-free perovskites.</p><p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 12","pages":""},"PeriodicalIF":10.7,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12500","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142869241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}