可持续农业的智能水凝胶

IF 10.7 Q1 CHEMISTRY, PHYSICAL
EcoMat Pub Date : 2025-04-03 DOI:10.1002/eom2.70011
Jungjoon Park, Weixin Guan, Guihua Yu
{"title":"可持续农业的智能水凝胶","authors":"Jungjoon Park,&nbsp;Weixin Guan,&nbsp;Guihua Yu","doi":"10.1002/eom2.70011","DOIUrl":null,"url":null,"abstract":"<p>The growing global population, coupled with increasing food demand and water scarcity, has intensified the need for advancements in modern agriculture. As an emerging class of materials featured by intensively tunable properties, smart hydrogels offer innovative solutions to challenges associated with conventional agricultural practices, such as excessive agrochemical and water use and inefficiencies that contribute to environmental degradation. Additionally, hydrogel-based sensors can monitor environmental conditions and crop health, enabling precise adjustments to optimize growth and resource use. By serving as platforms for the slow and controlled delivery of agrochemicals and smart sensors, hydrogel systems can enhance resource efficiency, reduce labor demands, and improve crop yields in an environmentally sustainable manner. This Perspective article summarizes recent advancements in hydrogel-based materials, highlights existing challenges, and proposes potential research directions, with a focus on developing advanced hydrogel systems to transform agricultural practices.</p><p>\n \n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"7 4","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.70011","citationCount":"0","resultStr":"{\"title\":\"Smart Hydrogels for Sustainable Agriculture\",\"authors\":\"Jungjoon Park,&nbsp;Weixin Guan,&nbsp;Guihua Yu\",\"doi\":\"10.1002/eom2.70011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The growing global population, coupled with increasing food demand and water scarcity, has intensified the need for advancements in modern agriculture. As an emerging class of materials featured by intensively tunable properties, smart hydrogels offer innovative solutions to challenges associated with conventional agricultural practices, such as excessive agrochemical and water use and inefficiencies that contribute to environmental degradation. Additionally, hydrogel-based sensors can monitor environmental conditions and crop health, enabling precise adjustments to optimize growth and resource use. By serving as platforms for the slow and controlled delivery of agrochemicals and smart sensors, hydrogel systems can enhance resource efficiency, reduce labor demands, and improve crop yields in an environmentally sustainable manner. This Perspective article summarizes recent advancements in hydrogel-based materials, highlights existing challenges, and proposes potential research directions, with a focus on developing advanced hydrogel systems to transform agricultural practices.</p><p>\\n \\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure>\\n </p>\",\"PeriodicalId\":93174,\"journal\":{\"name\":\"EcoMat\",\"volume\":\"7 4\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.70011\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EcoMat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eom2.70011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.70011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

全球人口的增长,加上粮食需求的增加和水资源的短缺,加强了对现代农业发展的需求。智能水凝胶作为一种新兴的材料,具有高度可调的特性,为传统农业实践带来的挑战提供了创新的解决方案,例如过度的农用化学品和水的使用以及导致环境退化的低效率。此外,基于水凝胶的传感器可以监测环境条件和作物健康状况,实现精确调整,以优化生长和资源利用。水凝胶系统作为农用化学品和智能传感器的缓慢和可控输送平台,可以提高资源效率,减少劳动力需求,并以环境可持续的方式提高作物产量。本文总结了水凝胶基材料的最新进展,强调了存在的挑战,并提出了潜在的研究方向,重点是开发先进的水凝胶体系来改变农业实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Smart Hydrogels for Sustainable Agriculture

Smart Hydrogels for Sustainable Agriculture

The growing global population, coupled with increasing food demand and water scarcity, has intensified the need for advancements in modern agriculture. As an emerging class of materials featured by intensively tunable properties, smart hydrogels offer innovative solutions to challenges associated with conventional agricultural practices, such as excessive agrochemical and water use and inefficiencies that contribute to environmental degradation. Additionally, hydrogel-based sensors can monitor environmental conditions and crop health, enabling precise adjustments to optimize growth and resource use. By serving as platforms for the slow and controlled delivery of agrochemicals and smart sensors, hydrogel systems can enhance resource efficiency, reduce labor demands, and improve crop yields in an environmentally sustainable manner. This Perspective article summarizes recent advancements in hydrogel-based materials, highlights existing challenges, and proposes potential research directions, with a focus on developing advanced hydrogel systems to transform agricultural practices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信