Giacomo Reina, David Panáček, Krista Rathammer, Stefanie Altenried, Philipp Meier, Paula Navascués, Zdeněk Baďura, Paula Bürgisser, Vera Kissling, Qun Ren, Radek Zbořil, Peter Wick
{"title":"Light Irradiation of N-Doped Graphene Acid: Metal-Free Strategy Toward Antibacterial and Antiviral Coatings With Dual Modes of Action","authors":"Giacomo Reina, David Panáček, Krista Rathammer, Stefanie Altenried, Philipp Meier, Paula Navascués, Zdeněk Baďura, Paula Bürgisser, Vera Kissling, Qun Ren, Radek Zbořil, Peter Wick","doi":"10.1002/eom2.70009","DOIUrl":null,"url":null,"abstract":"<p>The increasing emergence of antimicrobial resistance and the development of new infective viral strains represent a constantly growing threat. Metal-based nanomaterials have emerged as promising tools in the fight against bacterial and viral infections; however, the release of metal nanoparticles/ions in clinical applications may cause undesired side effects (allergies, systemic toxicity), reducing their practical use in antimicrobial treatment. Moreover, the metal-based nanoparticles possess predominantly antibacterial effects, while their antiviral efficiency remains controversial. Thus, the development of metal-free strategies enabling combined antibacterial/antiviral properties is a significant challenge. Here, we report a strategy based on light irradiation of nitrogen-doped graphene acid (NGA) possessing dual photothermal and photodynamic modes of action. The antimicrobial activity is activated through a clinically approved near-infrared (NIR) light source, and both viral and bacterial spreading can be hampered on the coating irradiation on a scale of minutes (5 to 10 min). The developed metal-free strategy reduced 90.9% and 99.99% for <i>S. aureus</i> and <i>P. aeruginosa</i>, respectively, as well as 99.97% for murine hepatitis virus. Importantly, this research represents a significant advancement in the development of safe, metal-free, and effective antimicrobial treatments. NGA coatings are safe for skin, showing no sensitization or irritation, and offer significant potential for advanced antimicrobial treatments.</p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"7 4","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.70009","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.70009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing emergence of antimicrobial resistance and the development of new infective viral strains represent a constantly growing threat. Metal-based nanomaterials have emerged as promising tools in the fight against bacterial and viral infections; however, the release of metal nanoparticles/ions in clinical applications may cause undesired side effects (allergies, systemic toxicity), reducing their practical use in antimicrobial treatment. Moreover, the metal-based nanoparticles possess predominantly antibacterial effects, while their antiviral efficiency remains controversial. Thus, the development of metal-free strategies enabling combined antibacterial/antiviral properties is a significant challenge. Here, we report a strategy based on light irradiation of nitrogen-doped graphene acid (NGA) possessing dual photothermal and photodynamic modes of action. The antimicrobial activity is activated through a clinically approved near-infrared (NIR) light source, and both viral and bacterial spreading can be hampered on the coating irradiation on a scale of minutes (5 to 10 min). The developed metal-free strategy reduced 90.9% and 99.99% for S. aureus and P. aeruginosa, respectively, as well as 99.97% for murine hepatitis virus. Importantly, this research represents a significant advancement in the development of safe, metal-free, and effective antimicrobial treatments. NGA coatings are safe for skin, showing no sensitization or irritation, and offer significant potential for advanced antimicrobial treatments.