Youngwoo Choi, Gumin Kang, Seonghyun Kim, Yoonhan Cho, Jaewhan Oh, Dongho Kim, Jacob Choe, Jong Min Yuk, Pyuck-Pa Choi, Yongsoo Yang, Sung-Yoon Chung, Chi Won Ahn, Jongwoo Lim, Seungbum Hong
{"title":"Multiscale Materials Imaging and Spectroscopy for Battery Materials","authors":"Youngwoo Choi, Gumin Kang, Seonghyun Kim, Yoonhan Cho, Jaewhan Oh, Dongho Kim, Jacob Choe, Jong Min Yuk, Pyuck-Pa Choi, Yongsoo Yang, Sung-Yoon Chung, Chi Won Ahn, Jongwoo Lim, Seungbum Hong","doi":"10.1002/eom2.70016","DOIUrl":null,"url":null,"abstract":"<p>Multiscale imaging and spectroscopy play a pivotal role in understanding the structural, chemical, and dynamic behavior of battery materials, providing critical insights that drive advancements in performance, longevity, and safety. This review provides a comprehensive analysis of various imaging techniques, from macroscopic tools like x-ray tomography to nanoscale methods such as atomic force microscopy and transmission electron microscopy. By categorizing these techniques based on spatial resolution, the review highlights their applications in resolving key issues like electrode degradation, dendrite formation, and phase transitions during battery operation. Moreover, the integration of machine learning accelerates data processing, enabling multiscale correlations and predictive modeling. The review underscores the necessity of multiscale approaches to optimize battery performance, safety, and lifespan, showcasing how emerging methodologies contribute to next-generation energy storage technologies.</p><p>\n \n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"7 5","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.70016","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.70016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Multiscale imaging and spectroscopy play a pivotal role in understanding the structural, chemical, and dynamic behavior of battery materials, providing critical insights that drive advancements in performance, longevity, and safety. This review provides a comprehensive analysis of various imaging techniques, from macroscopic tools like x-ray tomography to nanoscale methods such as atomic force microscopy and transmission electron microscopy. By categorizing these techniques based on spatial resolution, the review highlights their applications in resolving key issues like electrode degradation, dendrite formation, and phase transitions during battery operation. Moreover, the integration of machine learning accelerates data processing, enabling multiscale correlations and predictive modeling. The review underscores the necessity of multiscale approaches to optimize battery performance, safety, and lifespan, showcasing how emerging methodologies contribute to next-generation energy storage technologies.