智能电子纺织超级电容器的喷墨打印金属有机框架

IF 12.6 Q1 CHEMISTRY, PHYSICAL
EcoMat Pub Date : 2025-07-07 DOI:10.1002/eom2.70020
M. R. Islam, S. Afroj, S. Tan, S. J. Eichhorn, K. S. Novoselov, N. Karim
{"title":"智能电子纺织超级电容器的喷墨打印金属有机框架","authors":"M. R. Islam,&nbsp;S. Afroj,&nbsp;S. Tan,&nbsp;S. J. Eichhorn,&nbsp;K. S. Novoselov,&nbsp;N. Karim","doi":"10.1002/eom2.70020","DOIUrl":null,"url":null,"abstract":"<p>Wearable electronic textiles (e-textiles) present a transformative platform for integrating real-time health monitoring devices into everyday garments. Despite their promise, the development of flexible, efficient, and reliable on-body energy storage remains a major bottleneck. Inkjet printing, known for its precision and compatibility with various substrates, emerges as a viable method for fabricating energy devices on textiles. Metal–organic frameworks (MOFs) have shown great promise in prior studies for enabling flexible and high-performance energy storage in wearable electronics. Here, we present a novel strategy for engineering metal–organic framework (MOF)-based e-textiles as electrodes for a solid-state textile supercapacitor, utilizing inkjet printing technology. For the first time, standalone MOF inks were successfully deposited on textile substrates, producing highly flexible and washable conductive fabrics. These MOF-integrated textiles functioned as supercapacitor electrodes, achieving outstanding electrochemical performance with areal and gravimetric capacitances reaching ~354 mF cm<sup>−2</sup> and ~87 F g<sup>−1</sup>, at a 1 mV s<sup>−1</sup> scan rate respectively. The devices also demonstrated a high energy density of approximately 196 μW h cm<sup>−2</sup> with a remarkable power density of ~54 385 μW cm<sup>−2</sup>, with nearly 99% retention after 1000 charge–discharge cycles. These results establish MOF-based e-textiles as a promising avenue for the next-generation of wearable energy storage systems.</p><p>\n \n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"7 7","pages":""},"PeriodicalIF":12.6000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.70020","citationCount":"0","resultStr":"{\"title\":\"Inkjet-Printed Metal–Organic Frameworks for Smart E-Textile Supercapacitors\",\"authors\":\"M. R. Islam,&nbsp;S. Afroj,&nbsp;S. Tan,&nbsp;S. J. Eichhorn,&nbsp;K. S. Novoselov,&nbsp;N. Karim\",\"doi\":\"10.1002/eom2.70020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Wearable electronic textiles (e-textiles) present a transformative platform for integrating real-time health monitoring devices into everyday garments. Despite their promise, the development of flexible, efficient, and reliable on-body energy storage remains a major bottleneck. Inkjet printing, known for its precision and compatibility with various substrates, emerges as a viable method for fabricating energy devices on textiles. Metal–organic frameworks (MOFs) have shown great promise in prior studies for enabling flexible and high-performance energy storage in wearable electronics. Here, we present a novel strategy for engineering metal–organic framework (MOF)-based e-textiles as electrodes for a solid-state textile supercapacitor, utilizing inkjet printing technology. For the first time, standalone MOF inks were successfully deposited on textile substrates, producing highly flexible and washable conductive fabrics. These MOF-integrated textiles functioned as supercapacitor electrodes, achieving outstanding electrochemical performance with areal and gravimetric capacitances reaching ~354 mF cm<sup>−2</sup> and ~87 F g<sup>−1</sup>, at a 1 mV s<sup>−1</sup> scan rate respectively. The devices also demonstrated a high energy density of approximately 196 μW h cm<sup>−2</sup> with a remarkable power density of ~54 385 μW cm<sup>−2</sup>, with nearly 99% retention after 1000 charge–discharge cycles. These results establish MOF-based e-textiles as a promising avenue for the next-generation of wearable energy storage systems.</p><p>\\n \\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure>\\n </p>\",\"PeriodicalId\":93174,\"journal\":{\"name\":\"EcoMat\",\"volume\":\"7 7\",\"pages\":\"\"},\"PeriodicalIF\":12.6000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.70020\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EcoMat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eom2.70020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.70020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

可穿戴电子纺织品(e-纺织品)提供了一个将实时健康监测设备集成到日常服装中的变革性平台。尽管前景看好,但灵活、高效、可靠的体上储能技术的发展仍然是一个主要瓶颈。喷墨印刷以其精度和与各种基材的兼容性而闻名,成为在纺织品上制造能源装置的可行方法。金属有机框架(mof)在先前的研究中显示出很大的希望,可以在可穿戴电子设备中实现灵活和高性能的能量存储。在这里,我们提出了一种新的策略,利用喷墨打印技术,以工程金属有机框架(MOF)为基础的电子纺织品作为固态纺织品超级电容器的电极。第一次,独立的MOF油墨成功地沉积在纺织基材上,生产出高柔韧性和可水洗的导电织物。这些mof集成纺织品作为超级电容器电极,在1 mV s−1扫描速率下,面积和重量电容分别达到~ 354mf cm−2和~ 87f g−1,具有优异的电化学性能。器件的能量密度约为196 μW h cm−2,功率密度约为54 385 μW cm−2,在1000次充放电循环后保持率接近99%。这些结果确立了基于mof的电子纺织品作为下一代可穿戴能源存储系统的有前途的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Inkjet-Printed Metal–Organic Frameworks for Smart E-Textile Supercapacitors

Inkjet-Printed Metal–Organic Frameworks for Smart E-Textile Supercapacitors

Wearable electronic textiles (e-textiles) present a transformative platform for integrating real-time health monitoring devices into everyday garments. Despite their promise, the development of flexible, efficient, and reliable on-body energy storage remains a major bottleneck. Inkjet printing, known for its precision and compatibility with various substrates, emerges as a viable method for fabricating energy devices on textiles. Metal–organic frameworks (MOFs) have shown great promise in prior studies for enabling flexible and high-performance energy storage in wearable electronics. Here, we present a novel strategy for engineering metal–organic framework (MOF)-based e-textiles as electrodes for a solid-state textile supercapacitor, utilizing inkjet printing technology. For the first time, standalone MOF inks were successfully deposited on textile substrates, producing highly flexible and washable conductive fabrics. These MOF-integrated textiles functioned as supercapacitor electrodes, achieving outstanding electrochemical performance with areal and gravimetric capacitances reaching ~354 mF cm−2 and ~87 F g−1, at a 1 mV s−1 scan rate respectively. The devices also demonstrated a high energy density of approximately 196 μW h cm−2 with a remarkable power density of ~54 385 μW cm−2, with nearly 99% retention after 1000 charge–discharge cycles. These results establish MOF-based e-textiles as a promising avenue for the next-generation of wearable energy storage systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信