{"title":"Dynamic Electrochemical Impedance Spectroscopy: A Forward Application Approach for Lithium-Ion Battery Status Assessment","authors":"Xinyi Zhang, Yunpei Lu, Jingfu Shi, Yuezheng Liu, Hao Cheng, Yingying Lu","doi":"10.1002/eom2.70018","DOIUrl":null,"url":null,"abstract":"<p>Electrochemical impedance spectroscopy (EIS), as a non-invasive and non-destructive diagnostic technique, has shown unique advantages and significant potential in lithium-ion battery state monitoring. However, its traditional steady-state methods face substantial limitations under the non-stationary operating conditions commonly encountered in practical applications. To overcome these challenges, dynamic electrochemical impedance spectroscopy (DEIS) has emerged as a critical tool due to its real-time monitoring capabilities. This review provides a comprehensive overview of recent advances in DEIS for lithium-ion battery state monitoring, starting with an in-depth explanation of its working principles and a comparison with conventional EIS to highlight their respective advantages. Analytical methodologies for EIS are then introduced to establish a theoretical foundation for the discussion of subsequent findings. The review emphasizes recent breakthroughs achieved using DEIS, particularly in elucidating charge transfer dynamics during charge–discharge cycles, detecting lithium plating at the anode, and monitoring internal temperature variations within batteries. It further explores the potential of DEIS in battery health prediction, demonstrating its role in enhancing the accuracy and reliability of battery management systems. Finally, the review concludes with a forward-looking perspective on the future development of DEIS, underscoring its transformative potential in advancing battery diagnostics and management technologies.</p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"7 7","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.70018","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.70018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electrochemical impedance spectroscopy (EIS), as a non-invasive and non-destructive diagnostic technique, has shown unique advantages and significant potential in lithium-ion battery state monitoring. However, its traditional steady-state methods face substantial limitations under the non-stationary operating conditions commonly encountered in practical applications. To overcome these challenges, dynamic electrochemical impedance spectroscopy (DEIS) has emerged as a critical tool due to its real-time monitoring capabilities. This review provides a comprehensive overview of recent advances in DEIS for lithium-ion battery state monitoring, starting with an in-depth explanation of its working principles and a comparison with conventional EIS to highlight their respective advantages. Analytical methodologies for EIS are then introduced to establish a theoretical foundation for the discussion of subsequent findings. The review emphasizes recent breakthroughs achieved using DEIS, particularly in elucidating charge transfer dynamics during charge–discharge cycles, detecting lithium plating at the anode, and monitoring internal temperature variations within batteries. It further explores the potential of DEIS in battery health prediction, demonstrating its role in enhancing the accuracy and reliability of battery management systems. Finally, the review concludes with a forward-looking perspective on the future development of DEIS, underscoring its transformative potential in advancing battery diagnostics and management technologies.