Freezing Thermal Cycling Modulation of the Photoelectric Conversion in Organic Metal Halide Perovskites

IF 10.7 Q1 CHEMISTRY, PHYSICAL
EcoMat Pub Date : 2025-06-26 DOI:10.1002/eom2.70019
Shengjian Qin, Jiayu Song, Yinan Jiao, Jiale Meng, Hang Su, Jinjin Zhao
{"title":"Freezing Thermal Cycling Modulation of the Photoelectric Conversion in Organic Metal Halide Perovskites","authors":"Shengjian Qin,&nbsp;Jiayu Song,&nbsp;Yinan Jiao,&nbsp;Jiale Meng,&nbsp;Hang Su,&nbsp;Jinjin Zhao","doi":"10.1002/eom2.70019","DOIUrl":null,"url":null,"abstract":"<p>The industrialization of perovskite thin-film photovoltaics (PVs) has attracted global attention owing to their high photoelectric conversion efficiencies (PCEs). Seasonal temperature cycling significantly impacts the efficiency and stability of these devices, yet this phenomenon remains underexplored. This study investigates the influences of freezing thermal cycling (between near 0°C and 60°C) on the PV performance of traditional methylammonium lead iodide (MAPbI<sub>3</sub>) perovskite films. The results show that freezing thermal cycling introduces tensile lattice strain along [110] direction in MAPbI<sub>3</sub> perovskite films. The sample without thermal cycling exhibits the minimal tensile lattice strain of 0.32%, resulting in a minimal bandgap of 1.588 eV, reduced defect density, and extended carrier lifetime of 33.78 ns. The PV device using this perovskite film as the absorber layer demonstrates a maximum photocurrent of 83 μA. Theoretical calculations confirm that a moderate tensile strain along the [110] direction in tetragonal MAPbI<sub>3</sub> phase enhances the photoelectric conversion performance by reducing the bandgap and increasing the formation energy of iodine vacancies. These results highlight freezing thermal cycling as an effective strain engineering strategy offers a scalable approach for tuning photoelectric conversion performance of perovskite-based devices.</p><p>\n \n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"7 7","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.70019","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.70019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The industrialization of perovskite thin-film photovoltaics (PVs) has attracted global attention owing to their high photoelectric conversion efficiencies (PCEs). Seasonal temperature cycling significantly impacts the efficiency and stability of these devices, yet this phenomenon remains underexplored. This study investigates the influences of freezing thermal cycling (between near 0°C and 60°C) on the PV performance of traditional methylammonium lead iodide (MAPbI3) perovskite films. The results show that freezing thermal cycling introduces tensile lattice strain along [110] direction in MAPbI3 perovskite films. The sample without thermal cycling exhibits the minimal tensile lattice strain of 0.32%, resulting in a minimal bandgap of 1.588 eV, reduced defect density, and extended carrier lifetime of 33.78 ns. The PV device using this perovskite film as the absorber layer demonstrates a maximum photocurrent of 83 μA. Theoretical calculations confirm that a moderate tensile strain along the [110] direction in tetragonal MAPbI3 phase enhances the photoelectric conversion performance by reducing the bandgap and increasing the formation energy of iodine vacancies. These results highlight freezing thermal cycling as an effective strain engineering strategy offers a scalable approach for tuning photoelectric conversion performance of perovskite-based devices.

Abstract Image

有机金属卤化物钙钛矿中光电转换的冻结热循环调制
钙钛矿薄膜光伏(pv)因其具有较高的光电转换效率(pce)而受到全球的关注。季节性温度循环显著影响这些器件的效率和稳定性,但这一现象仍未得到充分研究。本研究考察了冷冻热循环(近0℃~ 60℃)对传统甲基碘化铅(MAPbI3)钙钛矿薄膜PV性能的影响。结果表明,冻结热循环在MAPbI3钙钛矿薄膜中引入了沿[110]方向的拉伸晶格应变。未进行热循环的样品的晶格拉伸应变最小为0.32%,带隙最小为1.588 eV,缺陷密度降低,载流子寿命延长33.78 ns。采用钙钛矿薄膜作为吸收层的光伏器件的最大光电流为83 μA。理论计算证实,在四方相MAPbI3中,沿[110]方向的适度拉伸应变可以减小带隙,提高碘空位的形成能,从而提高光电转换性能。这些结果突出了冻结热循环作为一种有效的应变工程策略,为调整钙钛矿基器件的光电转换性能提供了一种可扩展的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信