Jie Li, Limin Liu, Yuting Gao, Xiaoliang Zhou, Ming Fang, Jinze Guo, Xiaochong Zhou, Bo Zhang, Chunjiang Jia, Ben Bin Xu, Yinzhu Jiang
{"title":"离子交换合成低水普鲁士蓝类似物增强钠储存","authors":"Jie Li, Limin Liu, Yuting Gao, Xiaoliang Zhou, Ming Fang, Jinze Guo, Xiaochong Zhou, Bo Zhang, Chunjiang Jia, Ben Bin Xu, Yinzhu Jiang","doi":"10.1002/eom2.70000","DOIUrl":null,"url":null,"abstract":"<p>Iron hexacyanoferrate (FeHCF) is a promising cathode material for sodium-ion batteries (SIBs) due to its high theoretical capacity and low cost. Nevertheless, water in FeHCF is likely to take up Na<sup>+</sup> sites leading to the reductions in capacity and rate capability. Herein, an ion-exchange method is proposed to synthesize low-water potassium-sodium mixed iron hexacyanoferrate (KNaFeHCF). The ion-exchange method can preserve the lattice structure with low vacancies and K<sup>+</sup> with larger ionic radii can reduce the water content in FeHCF and improve Na<sup>+</sup> reaction kinetics. Compared with the NaFeHCF synthesized by co-precipitation method, the water content of optimal sample KNaFeHCF-12 h can be decreased by 21.2%. The sample exhibits excellent electrochemical performance, with a discharge capacity of 130.33 at 0.1 and 99.49 mAh g<sup>−1</sup> at 30 C. With a full-cell configuration with a hard carbon anode, the discharge capacity reaches 115.3 mAh g<sup>−1</sup> at 0.1 C. This study demonstrates a viable method for producing Prussian blue cathode materials with low water content, high specific capacity, and exceptional cycling stability.</p><p>\n \n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"7 2","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.70000","citationCount":"0","resultStr":"{\"title\":\"Ion-Exchange Synthesis of Low-Water Prussian Blue Analogs for Enhanced Sodium Storage\",\"authors\":\"Jie Li, Limin Liu, Yuting Gao, Xiaoliang Zhou, Ming Fang, Jinze Guo, Xiaochong Zhou, Bo Zhang, Chunjiang Jia, Ben Bin Xu, Yinzhu Jiang\",\"doi\":\"10.1002/eom2.70000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Iron hexacyanoferrate (FeHCF) is a promising cathode material for sodium-ion batteries (SIBs) due to its high theoretical capacity and low cost. Nevertheless, water in FeHCF is likely to take up Na<sup>+</sup> sites leading to the reductions in capacity and rate capability. Herein, an ion-exchange method is proposed to synthesize low-water potassium-sodium mixed iron hexacyanoferrate (KNaFeHCF). The ion-exchange method can preserve the lattice structure with low vacancies and K<sup>+</sup> with larger ionic radii can reduce the water content in FeHCF and improve Na<sup>+</sup> reaction kinetics. Compared with the NaFeHCF synthesized by co-precipitation method, the water content of optimal sample KNaFeHCF-12 h can be decreased by 21.2%. The sample exhibits excellent electrochemical performance, with a discharge capacity of 130.33 at 0.1 and 99.49 mAh g<sup>−1</sup> at 30 C. With a full-cell configuration with a hard carbon anode, the discharge capacity reaches 115.3 mAh g<sup>−1</sup> at 0.1 C. This study demonstrates a viable method for producing Prussian blue cathode materials with low water content, high specific capacity, and exceptional cycling stability.</p><p>\\n \\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure>\\n </p>\",\"PeriodicalId\":93174,\"journal\":{\"name\":\"EcoMat\",\"volume\":\"7 2\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.70000\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EcoMat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eom2.70000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.70000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
六氰高铁(FeHCF)具有理论容量大、成本低等优点,是一种很有前途的钠离子电池正极材料。然而,FeHCF中的水很可能占据Na+位点,导致容量和速率能力的降低。本文提出了一种离子交换法合成低水钾钠混合六氰高铁酸铁(KNaFeHCF)。离子交换法可以保持低空位的晶格结构,离子半径较大的K+可以降低FeHCF中的含水量,改善Na+反应动力学。与共沉淀法合成的NaFeHCF相比,最佳样品KNaFeHCF-12 h的含水量可降低21.2%。样品表现出优异的电化学性能,在0.1和30℃下的放电容量分别为130.33和99.49 mAh g−1。采用硬碳阳极的全电池配置,在0.1℃下放电容量达到115.3 mAh g−1。本研究展示了一种可行的方法来生产普鲁士蓝正极材料,具有低含水量,高比容量和特殊的循环稳定性。
Ion-Exchange Synthesis of Low-Water Prussian Blue Analogs for Enhanced Sodium Storage
Iron hexacyanoferrate (FeHCF) is a promising cathode material for sodium-ion batteries (SIBs) due to its high theoretical capacity and low cost. Nevertheless, water in FeHCF is likely to take up Na+ sites leading to the reductions in capacity and rate capability. Herein, an ion-exchange method is proposed to synthesize low-water potassium-sodium mixed iron hexacyanoferrate (KNaFeHCF). The ion-exchange method can preserve the lattice structure with low vacancies and K+ with larger ionic radii can reduce the water content in FeHCF and improve Na+ reaction kinetics. Compared with the NaFeHCF synthesized by co-precipitation method, the water content of optimal sample KNaFeHCF-12 h can be decreased by 21.2%. The sample exhibits excellent electrochemical performance, with a discharge capacity of 130.33 at 0.1 and 99.49 mAh g−1 at 30 C. With a full-cell configuration with a hard carbon anode, the discharge capacity reaches 115.3 mAh g−1 at 0.1 C. This study demonstrates a viable method for producing Prussian blue cathode materials with low water content, high specific capacity, and exceptional cycling stability.