Sustainable Approaches to Address Lead Toxicity in Halide Perovskite Solar Cells: A Review of Lead Encapsulation and Recycling Solutions

IF 10.7 Q1 CHEMISTRY, PHYSICAL
EcoMat Pub Date : 2025-01-07 DOI:10.1002/eom2.12511
Jiajia Suo, Henrik Pettersson, Bowen Yang
{"title":"Sustainable Approaches to Address Lead Toxicity in Halide Perovskite Solar Cells: A Review of Lead Encapsulation and Recycling Solutions","authors":"Jiajia Suo,&nbsp;Henrik Pettersson,&nbsp;Bowen Yang","doi":"10.1002/eom2.12511","DOIUrl":null,"url":null,"abstract":"<p>The increasing global concerns about energy shortages and environmental pollution are driving the development of materials for clean energy conversion. Among various materials, lead halide perovskite solar cells (PSCs) have emerged as promising candidates for next-generation photovoltaic (PV) technologies. However, the use of toxic lead in high-efficiency perovskite devices raises sustainability concerns, particularly due to the risk of environmental contamination from lead leakage. Given the projected growth of the perovskite photovoltaic market, effective management of lead toxicity is essential for the safe deployment of this technology. This review explores the latest developments in lead encapsulation strategies, including both external and internal encapsulation materials, aimed at mitigating lead leakage and enhancing the safety and sustainability of perovskite photovoltaics. Additionally, it also discusses various recycling solutions necessary to establish a sustainable closed-loop lead management system. These approaches not only recycle lead but also reclaim other materials, promoting the circular use of resources and advancing the competitiveness of perovskite PV technologies.</p><p>\n \n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"7 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12511","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing global concerns about energy shortages and environmental pollution are driving the development of materials for clean energy conversion. Among various materials, lead halide perovskite solar cells (PSCs) have emerged as promising candidates for next-generation photovoltaic (PV) technologies. However, the use of toxic lead in high-efficiency perovskite devices raises sustainability concerns, particularly due to the risk of environmental contamination from lead leakage. Given the projected growth of the perovskite photovoltaic market, effective management of lead toxicity is essential for the safe deployment of this technology. This review explores the latest developments in lead encapsulation strategies, including both external and internal encapsulation materials, aimed at mitigating lead leakage and enhancing the safety and sustainability of perovskite photovoltaics. Additionally, it also discusses various recycling solutions necessary to establish a sustainable closed-loop lead management system. These approaches not only recycle lead but also reclaim other materials, promoting the circular use of resources and advancing the competitiveness of perovskite PV technologies.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信