Triphase Heterogeneous Electrocatalysts of Ni and Co for High-Performing Li-O2 Batteries

IF 10.7 Q1 CHEMISTRY, PHYSICAL
EcoMat Pub Date : 2025-02-16 DOI:10.1002/eom2.70002
Shadeepa Karunarathne, Chanaka Sandaruwan, Yasun Y. Kannangara, Denisa Demko, François Orange, Alice Mija, Ali Reza Kamai, Amr M. Abdelkader
{"title":"Triphase Heterogeneous Electrocatalysts of Ni and Co for High-Performing Li-O2 Batteries","authors":"Shadeepa Karunarathne,&nbsp;Chanaka Sandaruwan,&nbsp;Yasun Y. Kannangara,&nbsp;Denisa Demko,&nbsp;François Orange,&nbsp;Alice Mija,&nbsp;Ali Reza Kamai,&nbsp;Amr M. Abdelkader","doi":"10.1002/eom2.70002","DOIUrl":null,"url":null,"abstract":"<p>The limited energy density of the current Li-ion batteries restricts the electrification of transportation to small- and medium-scale vehicles. On the contrary, Li-O<sub>2</sub> batteries (LOBs), with their significantly higher theoretical energy density, can power heavy-duty transportation, if the sluggish electrode kinetics in these devices can be substantially improved. The use of solid electrocatalysts at the cathode is a viable strategy to address this challenge, but current electrocatalysts fail to provide sufficient discharge depths and cyclability, primarily due to the formation of the film-like discharge product, Li₂O₂, on catalytic sites, which obstructs charge transport and gas diffusion pathways. Here, we report that a triphase heterogeneous catalyst comprising NiCoP, NiCo<sub>2</sub>S<sub>4</sub>, and NiCo<sub>2</sub>O<sub>4</sub>, assembled into a hierarchical hollow architecture (NC-3@Ni), efficiently modulates the morphology and orientation of the discharge product, facilitating the sheet-like growth of Li<sub>2</sub>O<sub>2</sub> perpendicular to the cathode surface. These modifications enable the assembled LOB to deliver a high discharge capacity of 25 162 mAh g<sup>−1</sup> at 400 mA g<sup>−1</sup>, along with impressive cycling performance, achieving 270 cycles with a discharge depth of 1000 mAh g<sup>−1</sup>, exceeding 1350 h of continuous operation. This promising performance is attributed to the presence of individual electrophilic and nucleophilic phases within the heterogeneous microstructure of the triphase catalyst, collectively promoting the formation of sheet-like Li<sub>2</sub>O<sub>2</sub>.</p><p>\n \n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"7 3","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.70002","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.70002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The limited energy density of the current Li-ion batteries restricts the electrification of transportation to small- and medium-scale vehicles. On the contrary, Li-O2 batteries (LOBs), with their significantly higher theoretical energy density, can power heavy-duty transportation, if the sluggish electrode kinetics in these devices can be substantially improved. The use of solid electrocatalysts at the cathode is a viable strategy to address this challenge, but current electrocatalysts fail to provide sufficient discharge depths and cyclability, primarily due to the formation of the film-like discharge product, Li₂O₂, on catalytic sites, which obstructs charge transport and gas diffusion pathways. Here, we report that a triphase heterogeneous catalyst comprising NiCoP, NiCo2S4, and NiCo2O4, assembled into a hierarchical hollow architecture (NC-3@Ni), efficiently modulates the morphology and orientation of the discharge product, facilitating the sheet-like growth of Li2O2 perpendicular to the cathode surface. These modifications enable the assembled LOB to deliver a high discharge capacity of 25 162 mAh g−1 at 400 mA g−1, along with impressive cycling performance, achieving 270 cycles with a discharge depth of 1000 mAh g−1, exceeding 1350 h of continuous operation. This promising performance is attributed to the presence of individual electrophilic and nucleophilic phases within the heterogeneous microstructure of the triphase catalyst, collectively promoting the formation of sheet-like Li2O2.

Abstract Image

高性能锂氧电池用镍、钴三相非均相电催化剂
目前有限的能量密度的锂离子电池限制了电气化运输到中小型车辆。相反,如果能大幅改善锂氧电池(lob)中缓慢的电极动力学,则其理论能量密度明显更高,可以为重型运输提供动力。在阴极上使用固体电催化剂是解决这一挑战的可行策略,但目前的电催化剂无法提供足够的放电深度和可循环性,主要原因是在催化位点上形成薄膜状的放电产物Li₂O₂,阻碍了电荷传输和气体扩散途径。在这里,我们报道了一种由NiCoP, NiCo2S4和NiCo2O4组成的三相非均相催化剂,组装成一个分层中空结构(NC-3@Ni),有效地调节放电产物的形态和取向,促进Li2O2垂直于阴极表面的片状生长。这些改进使组装的LOB能够在400 mA g - 1时提供25 162 mAh g - 1的高放电容量,以及令人印象深刻的循环性能,实现270次循环,放电深度为1000 mAh g - 1,连续运行时间超过1350小时。这种有希望的性能是由于在三相催化剂的异质微观结构中存在单独的亲电相和亲核相,共同促进片状Li2O2的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信