{"title":"Post-Polymerization Strategy via Dual Site Clicking for Synthesizing Intrinsically Cross-Linkable Semiconducting Polymers","authors":"Jaehoon Lee, Seungju Kang, Eunsoo Lee, Jiyun Lee, Tae Woong Yoon, Min-Jae Kim, Yongjoon Cho, Mingfei Xiao, Yorrick Boeije, Wenjin Zhu, Changduk Yang, Jin-Wook Lee, Sungjoo Lee, Guobing Zhang, Henning Sirringhaus, Boseok Kang","doi":"10.1002/eom2.12513","DOIUrl":null,"url":null,"abstract":"<p>Crosslinked organic semiconductors have opened the way for various fabrication techniques in the field of organic electronics owing to their three-dimensional network structure with high solvent resistivity. However, recent efforts to synthesize cross-linkable semiconducting polymers have been limited by their low molecular weights and yields. In this study, this limitation is overcome by a novel post-polymerization strategy. A reagent with a cross-linkable functional group, (3-mercaptopropyl)trimethoxysilane, is attached to a diketopyrrolopyrrole-based donor–acceptor copolymer (DPPTT) via thioesterification and <i>para</i>-fluoro-thiol reaction, modifying two sites simultaneously. This modification preserves the molecular weight and electrical properties of the original polymers. In addition, the use of click chemistry enables high yield (98%) without any purification. The modified DPPTT demonstrated high resistance to organic solvents (80% retention dipped in 1-chlorobenzene for 1 h). Exploiting this benefit, an ultrathin flexible array of 100 organic field-effect transistors fabricated using conventional photolithography showed high-performance reliability. Thus, this study provides a universal strategy to synthesize versatile polymer semiconductors for practical organic electronics.</p><p>\n \n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"7 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12513","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Crosslinked organic semiconductors have opened the way for various fabrication techniques in the field of organic electronics owing to their three-dimensional network structure with high solvent resistivity. However, recent efforts to synthesize cross-linkable semiconducting polymers have been limited by their low molecular weights and yields. In this study, this limitation is overcome by a novel post-polymerization strategy. A reagent with a cross-linkable functional group, (3-mercaptopropyl)trimethoxysilane, is attached to a diketopyrrolopyrrole-based donor–acceptor copolymer (DPPTT) via thioesterification and para-fluoro-thiol reaction, modifying two sites simultaneously. This modification preserves the molecular weight and electrical properties of the original polymers. In addition, the use of click chemistry enables high yield (98%) without any purification. The modified DPPTT demonstrated high resistance to organic solvents (80% retention dipped in 1-chlorobenzene for 1 h). Exploiting this benefit, an ultrathin flexible array of 100 organic field-effect transistors fabricated using conventional photolithography showed high-performance reliability. Thus, this study provides a universal strategy to synthesize versatile polymer semiconductors for practical organic electronics.