Briefings in bioinformatics最新文献

筛选
英文 中文
ACLNDA: an asymmetric graph contrastive learning framework for predicting noncoding RNA-disease associations in heterogeneous graphs. ACLNDA:在异构图中预测非编码 RNA 与疾病关联的非对称图对比学习框架。
IF 6.8 2区 生物学
Briefings in bioinformatics Pub Date : 2024-09-23 DOI: 10.1093/bib/bbae533
Laiyi Fu, ZhiYuan Yao, Yangyi Zhou, Qinke Peng, Hongqiang Lyu
{"title":"ACLNDA: an asymmetric graph contrastive learning framework for predicting noncoding RNA-disease associations in heterogeneous graphs.","authors":"Laiyi Fu, ZhiYuan Yao, Yangyi Zhou, Qinke Peng, Hongqiang Lyu","doi":"10.1093/bib/bbae533","DOIUrl":"https://doi.org/10.1093/bib/bbae533","url":null,"abstract":"<p><p>Noncoding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs) and microRNAs (miRNAs), play crucial roles in gene expression regulation and are significant in disease associations and medical research. Accurate ncRNA-disease association prediction is essential for understanding disease mechanisms and developing treatments. Existing methods often focus on single tasks like lncRNA-disease associations (LDAs), miRNA-disease associations (MDAs), or lncRNA-miRNA interactions (LMIs), and fail to exploit heterogeneous graph characteristics. We propose ACLNDA, an asymmetric graph contrastive learning framework for analyzing heterophilic ncRNA-disease associations. It constructs inter-layer adjacency matrices from the original lncRNA, miRNA, and disease associations, and uses a Top-K intra-layer similarity edges construction approach to form a triple-layer heterogeneous graph. Unlike traditional works, to account for both node attribute features (ncRNA/disease) and node preference features (association), ACLNDA employs an asymmetric yet simple graph contrastive learning framework to maximize one-hop neighborhood context and two-hop similarity, extracting ncRNA-disease features without relying on graph augmentations or homophily assumptions, reducing computational cost while preserving data integrity. Our framework is capable of being applied to a universal range of potential LDA, MDA, and LMI association predictions. Further experimental results demonstrate superior performance to other existing state-of-the-art baseline methods, which shows its potential for providing insights into disease diagnosis and therapeutic target identification. The source code and data of ACLNDA is publicly available at https://github.com/AI4Bread/ACLNDA.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":null,"pages":null},"PeriodicalIF":6.8,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497849/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting functional outcome in ischemic stroke patients using genetic, environmental, and clinical factors: a machine learning analysis of population-based prospective cohort study. 利用遗传、环境和临床因素预测缺血性中风患者的功能预后:基于人群的前瞻性队列研究的机器学习分析。
IF 6.8 2区 生物学
Briefings in bioinformatics Pub Date : 2024-09-23 DOI: 10.1093/bib/bbae487
Siding Chen, Zhe Xu, Jinfeng Yin, Hongqiu Gu, Yanfeng Shi, Cang Guo, Xia Meng, Hao Li, Xinying Huang, Yong Jiang, Yongjun Wang
{"title":"Predicting functional outcome in ischemic stroke patients using genetic, environmental, and clinical factors: a machine learning analysis of population-based prospective cohort study.","authors":"Siding Chen, Zhe Xu, Jinfeng Yin, Hongqiu Gu, Yanfeng Shi, Cang Guo, Xia Meng, Hao Li, Xinying Huang, Yong Jiang, Yongjun Wang","doi":"10.1093/bib/bbae487","DOIUrl":"https://doi.org/10.1093/bib/bbae487","url":null,"abstract":"<p><p>Ischemic stroke (IS) is a leading cause of adult disability that can severely compromise the quality of life for patients. Accurately predicting the IS functional outcome is crucial for precise risk stratification and effective therapeutic interventions. We developed a predictive model integrating genetic, environmental, and clinical factors using data from 7819 IS patients in the Third China National Stroke Registry. Employing an 80:20 split, we randomly divided the dataset into development and internal validation cohorts. The discrimination and calibration performance of models were evaluated using the area under the receiver operating characteristic curves (AUC) for discrimination and Brier score with calibration curve in the internal validation cohort. We conducted genome-wide association studies (GWAS) in the development cohort, identifying rs11109607 (ANKS1B) as the most significant variant associated with IS functional outcome. We employed principal component analysis to reduce dimensionality on the top 100 significant variants identified by the GWAS, incorporating them as genetic factors in the predictive model. We employed a machine learning algorithm capable of identifying nonlinear relationships to establish predictive models for IS patient functional outcome. The optimal model was the XGBoost model, which outperformed the logistic regression model (AUC 0.818 versus 0.756, P < .05) and significantly improved reclassification efficiency. Our study innovatively incorporated genetic, environmental, and clinical factors for predicting the IS functional outcome in East Asian populations, thereby offering novel insights into IS functional outcome.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":null,"pages":null},"PeriodicalIF":6.8,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471838/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thinking points for effective batch correction on biomedical data. 对生物医学数据进行有效批量校正的思考要点。
IF 6.8 2区 生物学
Briefings in bioinformatics Pub Date : 2024-09-23 DOI: 10.1093/bib/bbae515
Harvard Wai Hann Hui, Weijia Kong, Wilson Wen Bin Goh
{"title":"Thinking points for effective batch correction on biomedical data.","authors":"Harvard Wai Hann Hui, Weijia Kong, Wilson Wen Bin Goh","doi":"10.1093/bib/bbae515","DOIUrl":"https://doi.org/10.1093/bib/bbae515","url":null,"abstract":"<p><p>Batch effects introduce significant variability into high-dimensional data, complicating accurate analysis and leading to potentially misleading conclusions if not adequately addressed. Despite technological and algorithmic advancements in biomedical research, effectively managing batch effects remains a complex challenge requiring comprehensive considerations. This paper underscores the necessity of a flexible and holistic approach for selecting batch effect correction algorithms (BECAs), advocating for proper BECA evaluations and consideration of artificial intelligence-based strategies. We also discuss key challenges in batch effect correction, including the importance of uncovering hidden batch factors and understanding the impact of design imbalance, missing values, and aggressive correction. Our aim is to provide researchers with a robust framework for effective batch effects management and enhancing the reliability of high-dimensional data analyses.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":null,"pages":null},"PeriodicalIF":6.8,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471903/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cross-population enhancement of PrediXcan predictions with a gnomAD-based east Asian reference framework. 利用基于 gnomAD 的东亚参考框架对 PrediXcan 预测进行跨人群增强。
IF 6.8 2区 生物学
Briefings in bioinformatics Pub Date : 2024-09-23 DOI: 10.1093/bib/bbae549
Han-Ching Chan, Amrita Chattopadhyay, Tzu-Pin Lu
{"title":"Cross-population enhancement of PrediXcan predictions with a gnomAD-based east Asian reference framework.","authors":"Han-Ching Chan, Amrita Chattopadhyay, Tzu-Pin Lu","doi":"10.1093/bib/bbae549","DOIUrl":"10.1093/bib/bbae549","url":null,"abstract":"<p><p>Over the past decade, genome-wide association studies have identified thousands of variants significantly associated with complex traits. For each locus, gene expression levels are needed to further explore its biological functions. To address this, the PrediXcan algorithm leverages large-scale reference data to impute the gene expression level from single nucleotide polymorphisms, and thus the gene-trait associations can be tested to identify the candidate causal genes. However, a challenge arises due to the fact that most reference data are from subjects of European ancestry, and the accuracy and robustness of predicted gene expression in subjects of East Asian (EAS) ancestry remains unclear. Here, we first simulated a variety of scenarios to explore the impact of the level of population diversity on gene expression. Population differentiated variants were estimated by using the allele frequency information from The Genome Aggregation Database. We found that the weights of a variants was the main factor that affected the gene expression predictions, and that ~70% of variants were significantly population differentiated based on proportion tests. To provide insights into this population effect on gene expression levels, we utilized the allele frequency information to develop a gene expression reference panel, Predict Asian-Population (PredictAP), for EAS ancestry. PredictAP can be viewed as an auxiliary tool for PrediXcan when using genotype data from EAS subjects.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":null,"pages":null},"PeriodicalIF":6.8,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497844/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142516298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GGN-GO: geometric graph networks for predicting protein function by multi-scale structure features. GGN-GO:通过多尺度结构特征预测蛋白质功能的几何图网络。
IF 6.8 2区 生物学
Briefings in bioinformatics Pub Date : 2024-09-23 DOI: 10.1093/bib/bbae559
Jia Mi, Han Wang, Jing Li, Jinghong Sun, Chang Li, Jing Wan, Yuan Zeng, Jingyang Gao
{"title":"GGN-GO: geometric graph networks for predicting protein function by multi-scale structure features.","authors":"Jia Mi, Han Wang, Jing Li, Jinghong Sun, Chang Li, Jing Wan, Yuan Zeng, Jingyang Gao","doi":"10.1093/bib/bbae559","DOIUrl":"10.1093/bib/bbae559","url":null,"abstract":"<p><p>Recent advances in high-throughput sequencing have led to an explosion of genomic and transcriptomic data, offering a wealth of protein sequence information. However, the functions of most proteins remain unannotated. Traditional experimental methods for annotation of protein functions are costly and time-consuming. Current deep learning methods typically rely on Graph Convolutional Networks to propagate features between protein residues. However, these methods fail to capture fine atomic-level geometric structural features and cannot directly compute or propagate structural features (such as distances, directions, and angles) when transmitting features, often simplifying them to scalars. Additionally, difficulties in capturing long-range dependencies limit the model's ability to identify key nodes (residues). To address these challenges, we propose a geometric graph network (GGN-GO) for predicting protein function that enriches feature extraction by capturing multi-scale geometric structural features at the atomic and residue levels. We use a geometric vector perceptron to convert these features into vector representations and aggregate them with node features for better understanding and propagation in the network. Moreover, we introduce a graph attention pooling layer captures key node information by adaptively aggregating local functional motifs, while contrastive learning enhances graph representation discriminability through random noise and different views. The experimental results show that GGN-GO outperforms six comparative methods in tasks with the most labels for both experimentally validated and predicted protein structures. Furthermore, GGN-GO identifies functional residues corresponding to those experimentally confirmed, showcasing its interpretability and the ability to pinpoint key protein regions. The code and data are available at: https://github.com/MiJia-ID/GGN-GO.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":null,"pages":null},"PeriodicalIF":6.8,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530295/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recover then aggregate: unified cross-modal deep clustering with global structural information for single-cell data. 先恢复后聚合:利用全局结构信息对单细胞数据进行统一的跨模态深度聚类。
IF 6.8 2区 生物学
Briefings in bioinformatics Pub Date : 2024-09-23 DOI: 10.1093/bib/bbae485
Ziyi Wang, Peng Luo, Mingming Xiao, Boyang Wang, Tianyu Liu, Xiangyu Sun
{"title":"Recover then aggregate: unified cross-modal deep clustering with global structural information for single-cell data.","authors":"Ziyi Wang, Peng Luo, Mingming Xiao, Boyang Wang, Tianyu Liu, Xiangyu Sun","doi":"10.1093/bib/bbae485","DOIUrl":"10.1093/bib/bbae485","url":null,"abstract":"<p><p>Single-cell cross-modal joint clustering has been extensively utilized to investigate the tumor microenvironment. Although numerous approaches have been suggested, accurate clustering remains the main challenge. First, the gene expression matrix frequently contains numerous missing values due to measurement limitations. The majority of existing clustering methods treat it as a typical multi-modal dataset without further processing. Few methods conduct recovery before clustering and do not sufficiently engage with the underlying research, leading to suboptimal outcomes. Additionally, the existing cross-modal information fusion strategy does not ensure consistency of representations across different modes, potentially leading to the integration of conflicting information, which could degrade performance. To address these challenges, we propose the 'Recover then Aggregate' strategy and introduce the Unified Cross-Modal Deep Clustering model. Specifically, we have developed a data augmentation technique based on neighborhood similarity, iteratively imposing rank constraints on the Laplacian matrix, thus updating the similarity matrix and recovering dropout events. Concurrently, we integrate cross-modal features and employ contrastive learning to align modality-specific representations with consistent ones, enhancing the effective integration of diverse modal information. Comprehensive experiments on five real-world multi-modal datasets have demonstrated this method's superior effectiveness in single-cell clustering tasks.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":null,"pages":null},"PeriodicalIF":6.8,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445907/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142361070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MultiSC: a deep learning pipeline for analyzing multiomics single-cell data. MultiSC:用于分析多组学单细胞数据的深度学习管道。
IF 6.8 2区 生物学
Briefings in bioinformatics Pub Date : 2024-09-23 DOI: 10.1093/bib/bbae492
Xiang Lin, Siqi Jiang, Le Gao, Zhi Wei, Junwen Wang
{"title":"MultiSC: a deep learning pipeline for analyzing multiomics single-cell data.","authors":"Xiang Lin, Siqi Jiang, Le Gao, Zhi Wei, Junwen Wang","doi":"10.1093/bib/bbae492","DOIUrl":"https://doi.org/10.1093/bib/bbae492","url":null,"abstract":"<p><p>Single-cell technologies enable researchers to investigate cell functions at an individual cell level and study cellular processes with higher resolution. Several multi-omics single-cell sequencing techniques have been developed to explore various aspects of cellular behavior. Using NEAT-seq as an example, this method simultaneously obtains three kinds of omics data for each cell: gene expression, chromatin accessibility, and protein expression of transcription factors (TFs). Consequently, NEAT-seq offers a more comprehensive understanding of cellular activities in multiple modalities. However, there is a lack of tools available for effectively integrating the three types of omics data. To address this gap, we propose a novel pipeline called MultiSC for the analysis of MULTIomic Single-Cell data. Our pipeline leverages a multimodal constraint autoencoder (single-cell hierarchical constraint autoencoder) to integrate the multi-omics data during the clustering process and a matrix factorization-based model (scMF) to predict target genes regulated by a TF. Moreover, we utilize multivariate linear regression models to predict gene regulatory networks from the multi-omics data. Additional functionalities, including differential expression, mediation analysis, and causal inference, are also incorporated into the MultiSC pipeline. Extensive experiments were conducted to evaluate the performance of MultiSC. The results demonstrate that our pipeline enables researchers to gain a comprehensive view of cell activities and gene regulatory networks by fully leveraging the potential of multiomics single-cell data. By employing MultiSC, researchers can effectively integrate and analyze diverse omics data types, enhancing their understanding of cellular processes.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":null,"pages":null},"PeriodicalIF":6.8,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458747/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142388137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atomistic simulations reveal impacts of missense mutations on the structure and function of SynGAP1. 原子模拟揭示了错义突变对 SynGAP1 结构和功能的影响。
IF 6.8 2区 生物学
Briefings in bioinformatics Pub Date : 2024-09-23 DOI: 10.1093/bib/bbae458
Aliaa E Ali, Li-Li Li, Michael J Courtney, Olli T Pentikäinen, Pekka A Postila
{"title":"Atomistic simulations reveal impacts of missense mutations on the structure and function of SynGAP1.","authors":"Aliaa E Ali, Li-Li Li, Michael J Courtney, Olli T Pentikäinen, Pekka A Postila","doi":"10.1093/bib/bbae458","DOIUrl":"10.1093/bib/bbae458","url":null,"abstract":"<p><p>De novo mutations in the synaptic GTPase activating protein (SynGAP) are associated with neurological disorders like intellectual disability, epilepsy, and autism. SynGAP is also implicated in Alzheimer's disease and cancer. Although pathogenic variants are highly penetrant in neurodevelopmental conditions, a substantial number of them are caused by missense mutations that are difficult to diagnose. Hence, in silico mutagenesis was performed for probing the missense effects within the N-terminal region of SynGAP structure. Through extensive molecular dynamics simulations, encompassing three 150-ns replicates for 211 variants, the impact of missense mutations on the protein fold was assessed. The effect of the mutations on the folding stability was also quantitatively assessed using free energy calculations. The mutations were categorized as potentially pathogenic or benign based on their structural impacts. Finally, the study introduces wild-type-SynGAP in complex with RasGTPase at the inner membrane, while considering the potential effects of mutations on these key interactions. This study provides structural perspective to the clinical assessment of SynGAP missense variants and lays the foundation for future structure-based drug discovery.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":null,"pages":null},"PeriodicalIF":6.8,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11418247/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142280434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DGCL: dual-graph neural networks contrastive learning for molecular property prediction. DGCL:用于分子特性预测的双图神经网络对比学习。
IF 6.8 2区 生物学
Briefings in bioinformatics Pub Date : 2024-09-23 DOI: 10.1093/bib/bbae474
Xiuyu Jiang, Liqin Tan, Qingsong Zou
{"title":"DGCL: dual-graph neural networks contrastive learning for molecular property prediction.","authors":"Xiuyu Jiang, Liqin Tan, Qingsong Zou","doi":"10.1093/bib/bbae474","DOIUrl":"https://doi.org/10.1093/bib/bbae474","url":null,"abstract":"<p><p>In this paper, we propose DGCL, a dual-graph neural networks (GNNs)-based contrastive learning (CL) integrated with mixed molecular fingerprints (MFPs) for molecular property prediction. The DGCL-MFP method contains two stages. In the first pretraining stage, we utilize two different GNNs as encoders to construct CL, rather than using the method of generating enhanced graphs as before. Precisely, DGCL aggregates and enhances features of the same molecule by the Graph Isomorphism Network and the Graph Attention Network, with representations extracted from the same molecule serving as positive samples, and others marked as negative ones. In the downstream tasks training stage, features extracted from the two above pretrained graph networks and the meticulously selected MFPs are concated together to predict molecular properties. Our experiments show that DGCL enhances the performance of existing GNNs by achieving or surpassing the state-of-the-art self-supervised learning models on multiple benchmark datasets. Specifically, DGCL increases the average performance of classification tasks by 3.73$%$ and improves the performance of regression task Lipo by 0.126. Through ablation studies, we validate the impact of network fusion strategies and MFPs on model performance. In addition, DGCL's predictive performance is further enhanced by weighting different molecular features based on the Extended Connectivity Fingerprint. The code and datasets of DGCL will be made publicly available.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":null,"pages":null},"PeriodicalIF":6.8,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11428321/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioinformatics approaches for studying molecular sex differences in complex diseases. 研究复杂疾病分子性别差异的生物信息学方法。
IF 6.8 2区 生物学
Briefings in bioinformatics Pub Date : 2024-09-23 DOI: 10.1093/bib/bbae499
Rebecca Ting Jiin Loo, Mohamed Soudy, Francesco Nasta, Mirco Macchi, Enrico Glaab
{"title":"Bioinformatics approaches for studying molecular sex differences in complex diseases.","authors":"Rebecca Ting Jiin Loo, Mohamed Soudy, Francesco Nasta, Mirco Macchi, Enrico Glaab","doi":"10.1093/bib/bbae499","DOIUrl":"https://doi.org/10.1093/bib/bbae499","url":null,"abstract":"<p><p>Many complex diseases exhibit pronounced sex differences that can affect both the initial risk of developing the disease, as well as clinical disease symptoms, molecular manifestations, disease progression, and the risk of developing comorbidities. Despite this, computational studies of molecular data for complex diseases often treat sex as a confounding variable, aiming to filter out sex-specific effects rather than attempting to interpret them. A more systematic, in-depth exploration of sex-specific disease mechanisms could significantly improve our understanding of pathological and protective processes with sex-dependent profiles. This survey discusses dedicated bioinformatics approaches for the study of molecular sex differences in complex diseases. It highlights that, beyond classical statistical methods, approaches are needed that integrate prior knowledge of relevant hormone signaling interactions, gene regulatory networks, and sex linkage of genes to provide a mechanistic interpretation of sex-dependent alterations in disease. The review examines and compares the advantages, pitfalls and limitations of various conventional statistical and systems-level mechanistic analyses for this purpose, including tailored pathway and network analysis techniques. Overall, this survey highlights the potential of specialized bioinformatics techniques to systematically investigate molecular sex differences in complex diseases, to inform biomarker signature modeling, and to guide more personalized treatment approaches.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":null,"pages":null},"PeriodicalIF":6.8,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471957/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信