基于多视图对比学习的解耦GNNs用于scRNA-seq数据聚类。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Xiaoyan Yu, Yixuan Ren, Min Xia, Zhenqiu Shu, Liehuang Zhu
{"title":"基于多视图对比学习的解耦GNNs用于scRNA-seq数据聚类。","authors":"Xiaoyan Yu, Yixuan Ren, Min Xia, Zhenqiu Shu, Liehuang Zhu","doi":"10.1093/bib/bbaf198","DOIUrl":null,"url":null,"abstract":"<p><p>Clustering is pivotal in deciphering cellular heterogeneity in single-cell RNA sequencing (scRNA-seq) data. However, it suffers from several challenges in handling the high dimensionality and complexity of scRNA-seq data. Especially when employing graph neural networks (GNNs) for cell clustering, the dependencies between cells expand exponentially with the number of layers. This results in high computational complexity, negatively impacting the model's training efficiency. To address these challenges, we propose a novel approach, called decoupled GNNs, based on multi-view contrastive learning (scDeGNN), for scRNA-seq data clustering. Firstly, this method constructs two adjacency matrices to generate distinct views, and trains them using decoupled GNNs to derive the initial cell feature representations. These representations are then refined through a multilayer perceptron and a contrastive learning layer, ensuring the consistency and discriminability of the learned features. Finally, the learned representations are fused and applied to the cell clustering task. Extensive experimental results on nine real scRNA-seq datasets from various organisms and tissues show that the proposed scDeGNN method significantly outperforms other state-of-the-art scRNA-seq data clustering algorithms across multiple evaluation metrics.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12077398/pdf/","citationCount":"0","resultStr":"{\"title\":\"Decoupled GNNs based on multi-view contrastive learning for scRNA-seq data clustering.\",\"authors\":\"Xiaoyan Yu, Yixuan Ren, Min Xia, Zhenqiu Shu, Liehuang Zhu\",\"doi\":\"10.1093/bib/bbaf198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Clustering is pivotal in deciphering cellular heterogeneity in single-cell RNA sequencing (scRNA-seq) data. However, it suffers from several challenges in handling the high dimensionality and complexity of scRNA-seq data. Especially when employing graph neural networks (GNNs) for cell clustering, the dependencies between cells expand exponentially with the number of layers. This results in high computational complexity, negatively impacting the model's training efficiency. To address these challenges, we propose a novel approach, called decoupled GNNs, based on multi-view contrastive learning (scDeGNN), for scRNA-seq data clustering. Firstly, this method constructs two adjacency matrices to generate distinct views, and trains them using decoupled GNNs to derive the initial cell feature representations. These representations are then refined through a multilayer perceptron and a contrastive learning layer, ensuring the consistency and discriminability of the learned features. Finally, the learned representations are fused and applied to the cell clustering task. Extensive experimental results on nine real scRNA-seq datasets from various organisms and tissues show that the proposed scDeGNN method significantly outperforms other state-of-the-art scRNA-seq data clustering algorithms across multiple evaluation metrics.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12077398/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf198\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf198","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在单细胞RNA测序(scRNA-seq)数据中,聚类是破译细胞异质性的关键。然而,它在处理scRNA-seq数据的高维性和复杂性方面面临着一些挑战。特别是当使用图神经网络(gnn)进行细胞聚类时,细胞之间的依赖关系随着层数呈指数级增长。这导致计算复杂度高,对模型的训练效率产生负面影响。为了解决这些挑战,我们提出了一种新的方法,称为解耦gnn,基于多视图对比学习(scDeGNN),用于scRNA-seq数据聚类。该方法首先构造两个邻接矩阵生成不同的视图,并使用解耦gnn对其进行训练,得到初始的细胞特征表示。然后通过多层感知器和对比学习层对这些表示进行细化,确保学习到的特征的一致性和可判别性。最后,将学习到的表示融合并应用于细胞聚类任务。在来自不同生物体和组织的9个真实scRNA-seq数据集上的大量实验结果表明,所提出的scDeGNN方法在多个评估指标上显著优于其他最先进的scRNA-seq数据聚类算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decoupled GNNs based on multi-view contrastive learning for scRNA-seq data clustering.

Clustering is pivotal in deciphering cellular heterogeneity in single-cell RNA sequencing (scRNA-seq) data. However, it suffers from several challenges in handling the high dimensionality and complexity of scRNA-seq data. Especially when employing graph neural networks (GNNs) for cell clustering, the dependencies between cells expand exponentially with the number of layers. This results in high computational complexity, negatively impacting the model's training efficiency. To address these challenges, we propose a novel approach, called decoupled GNNs, based on multi-view contrastive learning (scDeGNN), for scRNA-seq data clustering. Firstly, this method constructs two adjacency matrices to generate distinct views, and trains them using decoupled GNNs to derive the initial cell feature representations. These representations are then refined through a multilayer perceptron and a contrastive learning layer, ensuring the consistency and discriminability of the learned features. Finally, the learned representations are fused and applied to the cell clustering task. Extensive experimental results on nine real scRNA-seq datasets from various organisms and tissues show that the proposed scDeGNN method significantly outperforms other state-of-the-art scRNA-seq data clustering algorithms across multiple evaluation metrics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信