Xiaoyan Yu, Yixuan Ren, Min Xia, Zhenqiu Shu, Liehuang Zhu
{"title":"基于多视图对比学习的解耦GNNs用于scRNA-seq数据聚类。","authors":"Xiaoyan Yu, Yixuan Ren, Min Xia, Zhenqiu Shu, Liehuang Zhu","doi":"10.1093/bib/bbaf198","DOIUrl":null,"url":null,"abstract":"<p><p>Clustering is pivotal in deciphering cellular heterogeneity in single-cell RNA sequencing (scRNA-seq) data. However, it suffers from several challenges in handling the high dimensionality and complexity of scRNA-seq data. Especially when employing graph neural networks (GNNs) for cell clustering, the dependencies between cells expand exponentially with the number of layers. This results in high computational complexity, negatively impacting the model's training efficiency. To address these challenges, we propose a novel approach, called decoupled GNNs, based on multi-view contrastive learning (scDeGNN), for scRNA-seq data clustering. Firstly, this method constructs two adjacency matrices to generate distinct views, and trains them using decoupled GNNs to derive the initial cell feature representations. These representations are then refined through a multilayer perceptron and a contrastive learning layer, ensuring the consistency and discriminability of the learned features. Finally, the learned representations are fused and applied to the cell clustering task. Extensive experimental results on nine real scRNA-seq datasets from various organisms and tissues show that the proposed scDeGNN method significantly outperforms other state-of-the-art scRNA-seq data clustering algorithms across multiple evaluation metrics.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12077398/pdf/","citationCount":"0","resultStr":"{\"title\":\"Decoupled GNNs based on multi-view contrastive learning for scRNA-seq data clustering.\",\"authors\":\"Xiaoyan Yu, Yixuan Ren, Min Xia, Zhenqiu Shu, Liehuang Zhu\",\"doi\":\"10.1093/bib/bbaf198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Clustering is pivotal in deciphering cellular heterogeneity in single-cell RNA sequencing (scRNA-seq) data. However, it suffers from several challenges in handling the high dimensionality and complexity of scRNA-seq data. Especially when employing graph neural networks (GNNs) for cell clustering, the dependencies between cells expand exponentially with the number of layers. This results in high computational complexity, negatively impacting the model's training efficiency. To address these challenges, we propose a novel approach, called decoupled GNNs, based on multi-view contrastive learning (scDeGNN), for scRNA-seq data clustering. Firstly, this method constructs two adjacency matrices to generate distinct views, and trains them using decoupled GNNs to derive the initial cell feature representations. These representations are then refined through a multilayer perceptron and a contrastive learning layer, ensuring the consistency and discriminability of the learned features. Finally, the learned representations are fused and applied to the cell clustering task. Extensive experimental results on nine real scRNA-seq datasets from various organisms and tissues show that the proposed scDeGNN method significantly outperforms other state-of-the-art scRNA-seq data clustering algorithms across multiple evaluation metrics.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12077398/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf198\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf198","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Decoupled GNNs based on multi-view contrastive learning for scRNA-seq data clustering.
Clustering is pivotal in deciphering cellular heterogeneity in single-cell RNA sequencing (scRNA-seq) data. However, it suffers from several challenges in handling the high dimensionality and complexity of scRNA-seq data. Especially when employing graph neural networks (GNNs) for cell clustering, the dependencies between cells expand exponentially with the number of layers. This results in high computational complexity, negatively impacting the model's training efficiency. To address these challenges, we propose a novel approach, called decoupled GNNs, based on multi-view contrastive learning (scDeGNN), for scRNA-seq data clustering. Firstly, this method constructs two adjacency matrices to generate distinct views, and trains them using decoupled GNNs to derive the initial cell feature representations. These representations are then refined through a multilayer perceptron and a contrastive learning layer, ensuring the consistency and discriminability of the learned features. Finally, the learned representations are fused and applied to the cell clustering task. Extensive experimental results on nine real scRNA-seq datasets from various organisms and tissues show that the proposed scDeGNN method significantly outperforms other state-of-the-art scRNA-seq data clustering algorithms across multiple evaluation metrics.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.