生物系统中多变量时间序列数据的网络分析:方法和应用。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Hao Mei, Zhiyuan Wang, Hang Yang, Xiaoke Li, Yaqing Xu
{"title":"生物系统中多变量时间序列数据的网络分析:方法和应用。","authors":"Hao Mei, Zhiyuan Wang, Hang Yang, Xiaoke Li, Yaqing Xu","doi":"10.1093/bib/bbaf223","DOIUrl":null,"url":null,"abstract":"<p><p>Network analysis has become an essential tool in biological and biomedical research, providing insights into complex biological mechanisms. Since biological systems are inherently time-dependent, incorporating time-varying methods is crucial for capturing temporal changes, adaptive interactions, and evolving dependencies within networks. Our study explores key time-varying methodologies for network structure estimation and network inference based on observed structures. We begin by discussing approaches for estimating network structures from data, focusing on the time-varying Gaussian graphical model, dynamic Bayesian network, and vector autoregression-based causal analysis. Next, we examine analytical techniques that leverage pre-specified or observed networks, including other autoregression-based methods and latent variable models. Furthermore, we explore practical applications and computational tools designed for these methods. By synthesizing these approaches, our study provides a comprehensive evaluation of their strengths and limitations in the context of biological data analysis.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12096012/pdf/","citationCount":"0","resultStr":"{\"title\":\"Network analysis of multivariate time series data in biological systems: methods and applications.\",\"authors\":\"Hao Mei, Zhiyuan Wang, Hang Yang, Xiaoke Li, Yaqing Xu\",\"doi\":\"10.1093/bib/bbaf223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Network analysis has become an essential tool in biological and biomedical research, providing insights into complex biological mechanisms. Since biological systems are inherently time-dependent, incorporating time-varying methods is crucial for capturing temporal changes, adaptive interactions, and evolving dependencies within networks. Our study explores key time-varying methodologies for network structure estimation and network inference based on observed structures. We begin by discussing approaches for estimating network structures from data, focusing on the time-varying Gaussian graphical model, dynamic Bayesian network, and vector autoregression-based causal analysis. Next, we examine analytical techniques that leverage pre-specified or observed networks, including other autoregression-based methods and latent variable models. Furthermore, we explore practical applications and computational tools designed for these methods. By synthesizing these approaches, our study provides a comprehensive evaluation of their strengths and limitations in the context of biological data analysis.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12096012/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf223\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf223","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

网络分析已成为生物学和生物医学研究的重要工具,提供了对复杂生物机制的见解。由于生物系统本质上是时变的,因此结合时变方法对于捕获网络内的时间变化、适应性相互作用和演化依赖性至关重要。我们的研究探索了基于观察结构的网络结构估计和网络推理的关键时变方法。我们首先讨论从数据中估计网络结构的方法,重点是时变高斯图模型、动态贝叶斯网络和基于向量自回归的因果分析。接下来,我们将研究利用预先指定或观察到的网络的分析技术,包括其他基于自回归的方法和潜在变量模型。此外,我们还探索了为这些方法设计的实际应用和计算工具。通过综合这些方法,我们的研究对它们在生物数据分析方面的优势和局限性进行了全面的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Network analysis of multivariate time series data in biological systems: methods and applications.

Network analysis has become an essential tool in biological and biomedical research, providing insights into complex biological mechanisms. Since biological systems are inherently time-dependent, incorporating time-varying methods is crucial for capturing temporal changes, adaptive interactions, and evolving dependencies within networks. Our study explores key time-varying methodologies for network structure estimation and network inference based on observed structures. We begin by discussing approaches for estimating network structures from data, focusing on the time-varying Gaussian graphical model, dynamic Bayesian network, and vector autoregression-based causal analysis. Next, we examine analytical techniques that leverage pre-specified or observed networks, including other autoregression-based methods and latent variable models. Furthermore, we explore practical applications and computational tools designed for these methods. By synthesizing these approaches, our study provides a comprehensive evaluation of their strengths and limitations in the context of biological data analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信