Knowledge-guided multi-level network modeling with experimental characterization identifies PRKCA as a novel biomarker and tumor suppressor triggering ferroptosis in prostate cancer.
{"title":"Knowledge-guided multi-level network modeling with experimental characterization identifies PRKCA as a novel biomarker and tumor suppressor triggering ferroptosis in prostate cancer.","authors":"Yuxin Lin, Zongming Jia, Jixiang Wu, Hubo Yang, Xin Chen, He Wang, Xuedong Wei, Wenying Yan, Xin Qi, Yuhua Huang","doi":"10.1093/bib/bbaf220","DOIUrl":null,"url":null,"abstract":"<p><p>Prostate cancer (PCa) is observed with high incidence in men worldwide. Ferroptosis, occurred from disorders in a series of gene and pathway regulation, is an emerging target against cancer. However, most of the computational approaches solely treated ferroptosis-related genes (FRGs) as independent variables in model training, and the interactions among FRGs and other candidates were not fully deciphered in a disease-specific content. In this study, a novel network-based and knowledge-guided bioinformatics model was proposed by integrating ferroptosis-related prior knowledge with topological and functional characterization on a protein-protein interaction network for biomarker discovery in PCa development and ferroptosis. The model started at a random walk with restart algorithm for weighting genes close to known FRGs in the PCa-specific network to extract a core subnetwork for robustness and vulnerability analysis. Then key regulatory modules and a candidate gene, i.e. PRKCA, were respectively identified using a multi-level prioritization strategy with hub-bottleneck node filtering, edge-based gene co-expression measuring, community module detecting and a newly defined Ferr.neighbor functional score. The experimental validation using human clinical samples, cell lines, and nude mice convinced the role of PRKCA as a latent biomarker and a tumor suppressor in PCa carcinogenesis with a potential mechanism on triggering GPX4-mediated ferroptosis of PCa cells. This study provides a general-purpose systems biology framework for significant FRG screening, and future translational perspectives of PRKCA as a novel diagnostic and therapeutic signature for PCa management should be explored.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12090055/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf220","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Prostate cancer (PCa) is observed with high incidence in men worldwide. Ferroptosis, occurred from disorders in a series of gene and pathway regulation, is an emerging target against cancer. However, most of the computational approaches solely treated ferroptosis-related genes (FRGs) as independent variables in model training, and the interactions among FRGs and other candidates were not fully deciphered in a disease-specific content. In this study, a novel network-based and knowledge-guided bioinformatics model was proposed by integrating ferroptosis-related prior knowledge with topological and functional characterization on a protein-protein interaction network for biomarker discovery in PCa development and ferroptosis. The model started at a random walk with restart algorithm for weighting genes close to known FRGs in the PCa-specific network to extract a core subnetwork for robustness and vulnerability analysis. Then key regulatory modules and a candidate gene, i.e. PRKCA, were respectively identified using a multi-level prioritization strategy with hub-bottleneck node filtering, edge-based gene co-expression measuring, community module detecting and a newly defined Ferr.neighbor functional score. The experimental validation using human clinical samples, cell lines, and nude mice convinced the role of PRKCA as a latent biomarker and a tumor suppressor in PCa carcinogenesis with a potential mechanism on triggering GPX4-mediated ferroptosis of PCa cells. This study provides a general-purpose systems biology framework for significant FRG screening, and future translational perspectives of PRKCA as a novel diagnostic and therapeutic signature for PCa management should be explored.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.