Xudong Liu, Zhiwei Nie, Haorui Si, Xurui Shen, Yutian Liu, Xiansong Huang, Tianyi Dong, Fan Xu, Zhixiang Ren, Peng Zhou, Jie Chen
{"title":"现实世界流行的SARS-CoV-2突变与计算机病毒进化的生成预测","authors":"Xudong Liu, Zhiwei Nie, Haorui Si, Xurui Shen, Yutian Liu, Xiansong Huang, Tianyi Dong, Fan Xu, Zhixiang Ren, Peng Zhou, Jie Chen","doi":"10.1093/bib/bbaf276","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting the mutation prevalence trends of emerging viruses in the real world is an efficient means to update vaccines or drugs in advance. It is crucial to develop a computational method for the prediction of real-world prevalent SARS-CoV-2 mutations considering the impact of multiple selective pressures within and between hosts. Here, a deep-learning generative framework for real-world prevalent SARS-CoV-2 mutation prediction, named ViralForesight, is developed on top of protein language models and in silico virus evolution. Through the paradigm of host-to-herd in silico virus evolution, ViralForesight reproduced previous real-world prevalent SARS-CoV-2 mutations for multiple lineages with superior performance. More importantly, ViralForesight correctly predicted the future prevalent mutations that dominated the COVID-19 pandemic in the real world more than half a year in advance with in vitro experimental validation. Overall, ViralForesight demonstrates a proactive approach to the prevention of emerging viral infections, accelerating the process of discovering future prevalent mutations with the power of generative deep learning.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generative prediction of real-world prevalent SARS-CoV-2 mutation with in silico virus evolution.\",\"authors\":\"Xudong Liu, Zhiwei Nie, Haorui Si, Xurui Shen, Yutian Liu, Xiansong Huang, Tianyi Dong, Fan Xu, Zhixiang Ren, Peng Zhou, Jie Chen\",\"doi\":\"10.1093/bib/bbaf276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Predicting the mutation prevalence trends of emerging viruses in the real world is an efficient means to update vaccines or drugs in advance. It is crucial to develop a computational method for the prediction of real-world prevalent SARS-CoV-2 mutations considering the impact of multiple selective pressures within and between hosts. Here, a deep-learning generative framework for real-world prevalent SARS-CoV-2 mutation prediction, named ViralForesight, is developed on top of protein language models and in silico virus evolution. Through the paradigm of host-to-herd in silico virus evolution, ViralForesight reproduced previous real-world prevalent SARS-CoV-2 mutations for multiple lineages with superior performance. More importantly, ViralForesight correctly predicted the future prevalent mutations that dominated the COVID-19 pandemic in the real world more than half a year in advance with in vitro experimental validation. Overall, ViralForesight demonstrates a proactive approach to the prevention of emerging viral infections, accelerating the process of discovering future prevalent mutations with the power of generative deep learning.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf276\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf276","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Generative prediction of real-world prevalent SARS-CoV-2 mutation with in silico virus evolution.
Predicting the mutation prevalence trends of emerging viruses in the real world is an efficient means to update vaccines or drugs in advance. It is crucial to develop a computational method for the prediction of real-world prevalent SARS-CoV-2 mutations considering the impact of multiple selective pressures within and between hosts. Here, a deep-learning generative framework for real-world prevalent SARS-CoV-2 mutation prediction, named ViralForesight, is developed on top of protein language models and in silico virus evolution. Through the paradigm of host-to-herd in silico virus evolution, ViralForesight reproduced previous real-world prevalent SARS-CoV-2 mutations for multiple lineages with superior performance. More importantly, ViralForesight correctly predicted the future prevalent mutations that dominated the COVID-19 pandemic in the real world more than half a year in advance with in vitro experimental validation. Overall, ViralForesight demonstrates a proactive approach to the prevention of emerging viral infections, accelerating the process of discovering future prevalent mutations with the power of generative deep learning.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.