{"title":"scaLR: a low-resource deep neural network-based platform for single cell analysis and biomarker discovery.","authors":"Saiyam Jogani, Anand Santosh Pol, Mayur Prajapati, Amit Samal, Kriti Bhatia, Jayendra Parmar, Urvik Patel, Falak Shah, Nisarg Vyas, Saurabh Gupta","doi":"10.1093/bib/bbaf243","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell ribonucleic acid (RNA) sequencing (scRNA-seq) produces vast amounts of individual cell profiling data. Its analysis presents a significant challenge in accurately annotating cell types and their associated biomarkers. Different pipelines based on deep neural network (DNN) methods have been employed to tackle these issues. These pipelines have arisen as a promising resource and can extract meaningful and concise features from noisy, diverse, and high-dimensional data to enhance annotations and subsequent analysis. Existing tools require high computational resources to execute large sample datasets. We have developed a cutting-edge platform known as scaLR (Single-cell analysis using low resource) that efficiently processes data into feature subsets, samples in batches to reduce the required memory for processing large datasets, and running DNN models in multiple central processing units. scaLR is equipped with data processing, feature extraction, training, evaluation, and downstream analysis. Its novel feature extraction algorithm first trains the model on a feature subset and stores the importance of the features for all the features in that subset. At the end of the training of all subsets, the top-K features are selected based on their importance. The final model is trained on top-K features; its performance evaluation and associated downstream analysis provide significant biomarkers for different cell types and diseases/traits. Our findings indicate that scaLR offers comparable prediction accuracy and requires less model training time and computational resources than existing Python-based pipelines. We present scaLR, a Python-based platform, engineered to utilize minimal computational resources while maintaining comparable execution times and analysis costs to existing frameworks.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12121358/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf243","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Single-cell ribonucleic acid (RNA) sequencing (scRNA-seq) produces vast amounts of individual cell profiling data. Its analysis presents a significant challenge in accurately annotating cell types and their associated biomarkers. Different pipelines based on deep neural network (DNN) methods have been employed to tackle these issues. These pipelines have arisen as a promising resource and can extract meaningful and concise features from noisy, diverse, and high-dimensional data to enhance annotations and subsequent analysis. Existing tools require high computational resources to execute large sample datasets. We have developed a cutting-edge platform known as scaLR (Single-cell analysis using low resource) that efficiently processes data into feature subsets, samples in batches to reduce the required memory for processing large datasets, and running DNN models in multiple central processing units. scaLR is equipped with data processing, feature extraction, training, evaluation, and downstream analysis. Its novel feature extraction algorithm first trains the model on a feature subset and stores the importance of the features for all the features in that subset. At the end of the training of all subsets, the top-K features are selected based on their importance. The final model is trained on top-K features; its performance evaluation and associated downstream analysis provide significant biomarkers for different cell types and diseases/traits. Our findings indicate that scaLR offers comparable prediction accuracy and requires less model training time and computational resources than existing Python-based pipelines. We present scaLR, a Python-based platform, engineered to utilize minimal computational resources while maintaining comparable execution times and analysis costs to existing frameworks.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.