scaLR:一个基于低资源深度神经网络的单细胞分析和生物标志物发现平台。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Saiyam Jogani, Anand Santosh Pol, Mayur Prajapati, Amit Samal, Kriti Bhatia, Jayendra Parmar, Urvik Patel, Falak Shah, Nisarg Vyas, Saurabh Gupta
{"title":"scaLR:一个基于低资源深度神经网络的单细胞分析和生物标志物发现平台。","authors":"Saiyam Jogani, Anand Santosh Pol, Mayur Prajapati, Amit Samal, Kriti Bhatia, Jayendra Parmar, Urvik Patel, Falak Shah, Nisarg Vyas, Saurabh Gupta","doi":"10.1093/bib/bbaf243","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell ribonucleic acid (RNA) sequencing (scRNA-seq) produces vast amounts of individual cell profiling data. Its analysis presents a significant challenge in accurately annotating cell types and their associated biomarkers. Different pipelines based on deep neural network (DNN) methods have been employed to tackle these issues. These pipelines have arisen as a promising resource and can extract meaningful and concise features from noisy, diverse, and high-dimensional data to enhance annotations and subsequent analysis. Existing tools require high computational resources to execute large sample datasets. We have developed a cutting-edge platform known as scaLR (Single-cell analysis using low resource) that efficiently processes data into feature subsets, samples in batches to reduce the required memory for processing large datasets, and running DNN models in multiple central processing units. scaLR is equipped with data processing, feature extraction, training, evaluation, and downstream analysis. Its novel feature extraction algorithm first trains the model on a feature subset and stores the importance of the features for all the features in that subset. At the end of the training of all subsets, the top-K features are selected based on their importance. The final model is trained on top-K features; its performance evaluation and associated downstream analysis provide significant biomarkers for different cell types and diseases/traits. Our findings indicate that scaLR offers comparable prediction accuracy and requires less model training time and computational resources than existing Python-based pipelines. We present scaLR, a Python-based platform, engineered to utilize minimal computational resources while maintaining comparable execution times and analysis costs to existing frameworks.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12121358/pdf/","citationCount":"0","resultStr":"{\"title\":\"scaLR: a low-resource deep neural network-based platform for single cell analysis and biomarker discovery.\",\"authors\":\"Saiyam Jogani, Anand Santosh Pol, Mayur Prajapati, Amit Samal, Kriti Bhatia, Jayendra Parmar, Urvik Patel, Falak Shah, Nisarg Vyas, Saurabh Gupta\",\"doi\":\"10.1093/bib/bbaf243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Single-cell ribonucleic acid (RNA) sequencing (scRNA-seq) produces vast amounts of individual cell profiling data. Its analysis presents a significant challenge in accurately annotating cell types and their associated biomarkers. Different pipelines based on deep neural network (DNN) methods have been employed to tackle these issues. These pipelines have arisen as a promising resource and can extract meaningful and concise features from noisy, diverse, and high-dimensional data to enhance annotations and subsequent analysis. Existing tools require high computational resources to execute large sample datasets. We have developed a cutting-edge platform known as scaLR (Single-cell analysis using low resource) that efficiently processes data into feature subsets, samples in batches to reduce the required memory for processing large datasets, and running DNN models in multiple central processing units. scaLR is equipped with data processing, feature extraction, training, evaluation, and downstream analysis. Its novel feature extraction algorithm first trains the model on a feature subset and stores the importance of the features for all the features in that subset. At the end of the training of all subsets, the top-K features are selected based on their importance. The final model is trained on top-K features; its performance evaluation and associated downstream analysis provide significant biomarkers for different cell types and diseases/traits. Our findings indicate that scaLR offers comparable prediction accuracy and requires less model training time and computational resources than existing Python-based pipelines. We present scaLR, a Python-based platform, engineered to utilize minimal computational resources while maintaining comparable execution times and analysis costs to existing frameworks.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12121358/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf243\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf243","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

单细胞核糖核酸(RNA)测序(scRNA-seq)产生大量的单个细胞谱数据。其分析在准确注释细胞类型及其相关生物标志物方面提出了重大挑战。不同的基于深度神经网络(DNN)方法的管道被用来解决这些问题。这些管道已经成为一种很有前途的资源,可以从嘈杂、多样和高维的数据中提取有意义和简洁的特征,以增强注释和后续分析。现有工具需要高计算资源来执行大型样本数据集。我们开发了一个称为scaLR(单细胞分析使用低资源)的尖端平台,该平台有效地将数据处理成特征子集,批量采样以减少处理大型数据集所需的内存,并在多个中央处理单元中运行DNN模型。scaLR具备数据处理、特征提取、训练、评估和下游分析等功能。其新颖的特征提取算法首先在特征子集上训练模型,并存储该子集中所有特征的重要性。在所有子集的训练结束时,根据它们的重要性选择top-K特征。最后的模型是在top-K特征上训练的;其性能评估和相关的下游分析为不同细胞类型和疾病/性状提供了重要的生物标志物。我们的研究结果表明,与现有的基于python的管道相比,scaLR提供了相当的预测精度,并且需要更少的模型训练时间和计算资源。我们介绍了scaLR,一个基于python的平台,旨在利用最少的计算资源,同时保持与现有框架相当的执行时间和分析成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
scaLR: a low-resource deep neural network-based platform for single cell analysis and biomarker discovery.

Single-cell ribonucleic acid (RNA) sequencing (scRNA-seq) produces vast amounts of individual cell profiling data. Its analysis presents a significant challenge in accurately annotating cell types and their associated biomarkers. Different pipelines based on deep neural network (DNN) methods have been employed to tackle these issues. These pipelines have arisen as a promising resource and can extract meaningful and concise features from noisy, diverse, and high-dimensional data to enhance annotations and subsequent analysis. Existing tools require high computational resources to execute large sample datasets. We have developed a cutting-edge platform known as scaLR (Single-cell analysis using low resource) that efficiently processes data into feature subsets, samples in batches to reduce the required memory for processing large datasets, and running DNN models in multiple central processing units. scaLR is equipped with data processing, feature extraction, training, evaluation, and downstream analysis. Its novel feature extraction algorithm first trains the model on a feature subset and stores the importance of the features for all the features in that subset. At the end of the training of all subsets, the top-K features are selected based on their importance. The final model is trained on top-K features; its performance evaluation and associated downstream analysis provide significant biomarkers for different cell types and diseases/traits. Our findings indicate that scaLR offers comparable prediction accuracy and requires less model training time and computational resources than existing Python-based pipelines. We present scaLR, a Python-based platform, engineered to utilize minimal computational resources while maintaining comparable execution times and analysis costs to existing frameworks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信