利用多模态对比表征学习增强LncRNA-miRNA相互作用预测。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Zhixia Teng, Zhaowen Tian, Murong Zhou, Guohua Wang, Zhen Tian, Yuming Zhao
{"title":"利用多模态对比表征学习增强LncRNA-miRNA相互作用预测。","authors":"Zhixia Teng, Zhaowen Tian, Murong Zhou, Guohua Wang, Zhen Tian, Yuming Zhao","doi":"10.1093/bib/bbaf281","DOIUrl":null,"url":null,"abstract":"<p><p>Interactions between long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) play an important role in the development of complex human diseases by collaboratively regulating gene transcription and expression. Therefore, identifying lncRNA-miRNA interactions (LMIs) is essential for diagnosing and treating complex human diseases. Because identifying LMIs with wet experiments is time-consuming and labor-intensive, some computational methods have been developed to infer LMIs. However, these approaches excel at utilizing single-modal information but struggle to integrate multimodal data from lncRNAs and miRNAs, which is essential for uncovering complex patterns in LMIs, ultimately limiting their performance. Therefore, this article proposes a novel multimodal contrastive representation learning model (MCRLMI) for LMI predictions. The model fully integrates multi-source similarity information and sequence encodings of lncRNAs and miRNAs. It leverages a graph convolutional network (GCN) and a Transformer to capture local neighborhood structural features and long-distance dependencies, respectively, enabling the collaborative modeling of structural and semantic information. Subsequently, to effectively integrate multimodal characteristics with encoded information, a multichannel attention mechanism and contrastive learning are introduced to fuse the extracted features. Finally, a Kolmogorov-Arnold Network (KAN) is trained with the optimized embeddings to predict LMIs. Extensive experiments show that the proposed MCRLMI consistently outperforms existing methods. Moreover, case studies further validate the potential of MCRLMI to identify novel LMIs in practical applications.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing LncRNA-miRNA interaction prediction with multimodal contrastive representation learning.\",\"authors\":\"Zhixia Teng, Zhaowen Tian, Murong Zhou, Guohua Wang, Zhen Tian, Yuming Zhao\",\"doi\":\"10.1093/bib/bbaf281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Interactions between long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) play an important role in the development of complex human diseases by collaboratively regulating gene transcription and expression. Therefore, identifying lncRNA-miRNA interactions (LMIs) is essential for diagnosing and treating complex human diseases. Because identifying LMIs with wet experiments is time-consuming and labor-intensive, some computational methods have been developed to infer LMIs. However, these approaches excel at utilizing single-modal information but struggle to integrate multimodal data from lncRNAs and miRNAs, which is essential for uncovering complex patterns in LMIs, ultimately limiting their performance. Therefore, this article proposes a novel multimodal contrastive representation learning model (MCRLMI) for LMI predictions. The model fully integrates multi-source similarity information and sequence encodings of lncRNAs and miRNAs. It leverages a graph convolutional network (GCN) and a Transformer to capture local neighborhood structural features and long-distance dependencies, respectively, enabling the collaborative modeling of structural and semantic information. Subsequently, to effectively integrate multimodal characteristics with encoded information, a multichannel attention mechanism and contrastive learning are introduced to fuse the extracted features. Finally, a Kolmogorov-Arnold Network (KAN) is trained with the optimized embeddings to predict LMIs. Extensive experiments show that the proposed MCRLMI consistently outperforms existing methods. Moreover, case studies further validate the potential of MCRLMI to identify novel LMIs in practical applications.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf281\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf281","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

长链非编码rna (lncRNAs)和微rna (miRNAs)之间的相互作用通过协同调节基因转录和表达,在复杂人类疾病的发展中发挥重要作用。因此,鉴定lncRNA-miRNA相互作用(LMIs)对于诊断和治疗复杂的人类疾病至关重要。由于湿法实验识别lmi耗时耗力,人们开发了一些计算方法来推断lmi。然而,这些方法擅长利用单模态信息,但难以整合来自lncrna和mirna的多模态数据,这对于揭示lmi中的复杂模式至关重要,最终限制了它们的性能。因此,本文提出了一种新的多模态对比表征学习模型(MCRLMI)用于LMI预测。该模型充分整合了lncrna和mirna的多源相似性信息和序列编码。它利用图形卷积网络(GCN)和Transformer分别捕获本地邻域结构特征和远程依赖关系,从而支持结构和语义信息的协作建模。随后,为了有效地将多模态特征与编码信息整合,引入了多通道注意机制和对比学习来融合提取的特征。最后,利用优化后的嵌入训练一个Kolmogorov-Arnold网络(KAN)来预测lmi。大量的实验表明,所提出的MCRLMI始终优于现有的方法。此外,案例研究进一步验证了MCRLMI在实际应用中识别新型lmi的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing LncRNA-miRNA interaction prediction with multimodal contrastive representation learning.

Interactions between long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) play an important role in the development of complex human diseases by collaboratively regulating gene transcription and expression. Therefore, identifying lncRNA-miRNA interactions (LMIs) is essential for diagnosing and treating complex human diseases. Because identifying LMIs with wet experiments is time-consuming and labor-intensive, some computational methods have been developed to infer LMIs. However, these approaches excel at utilizing single-modal information but struggle to integrate multimodal data from lncRNAs and miRNAs, which is essential for uncovering complex patterns in LMIs, ultimately limiting their performance. Therefore, this article proposes a novel multimodal contrastive representation learning model (MCRLMI) for LMI predictions. The model fully integrates multi-source similarity information and sequence encodings of lncRNAs and miRNAs. It leverages a graph convolutional network (GCN) and a Transformer to capture local neighborhood structural features and long-distance dependencies, respectively, enabling the collaborative modeling of structural and semantic information. Subsequently, to effectively integrate multimodal characteristics with encoded information, a multichannel attention mechanism and contrastive learning are introduced to fuse the extracted features. Finally, a Kolmogorov-Arnold Network (KAN) is trained with the optimized embeddings to predict LMIs. Extensive experiments show that the proposed MCRLMI consistently outperforms existing methods. Moreover, case studies further validate the potential of MCRLMI to identify novel LMIs in practical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信