{"title":"利用多模态对比表征学习增强LncRNA-miRNA相互作用预测。","authors":"Zhixia Teng, Zhaowen Tian, Murong Zhou, Guohua Wang, Zhen Tian, Yuming Zhao","doi":"10.1093/bib/bbaf281","DOIUrl":null,"url":null,"abstract":"<p><p>Interactions between long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) play an important role in the development of complex human diseases by collaboratively regulating gene transcription and expression. Therefore, identifying lncRNA-miRNA interactions (LMIs) is essential for diagnosing and treating complex human diseases. Because identifying LMIs with wet experiments is time-consuming and labor-intensive, some computational methods have been developed to infer LMIs. However, these approaches excel at utilizing single-modal information but struggle to integrate multimodal data from lncRNAs and miRNAs, which is essential for uncovering complex patterns in LMIs, ultimately limiting their performance. Therefore, this article proposes a novel multimodal contrastive representation learning model (MCRLMI) for LMI predictions. The model fully integrates multi-source similarity information and sequence encodings of lncRNAs and miRNAs. It leverages a graph convolutional network (GCN) and a Transformer to capture local neighborhood structural features and long-distance dependencies, respectively, enabling the collaborative modeling of structural and semantic information. Subsequently, to effectively integrate multimodal characteristics with encoded information, a multichannel attention mechanism and contrastive learning are introduced to fuse the extracted features. Finally, a Kolmogorov-Arnold Network (KAN) is trained with the optimized embeddings to predict LMIs. Extensive experiments show that the proposed MCRLMI consistently outperforms existing methods. Moreover, case studies further validate the potential of MCRLMI to identify novel LMIs in practical applications.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing LncRNA-miRNA interaction prediction with multimodal contrastive representation learning.\",\"authors\":\"Zhixia Teng, Zhaowen Tian, Murong Zhou, Guohua Wang, Zhen Tian, Yuming Zhao\",\"doi\":\"10.1093/bib/bbaf281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Interactions between long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) play an important role in the development of complex human diseases by collaboratively regulating gene transcription and expression. Therefore, identifying lncRNA-miRNA interactions (LMIs) is essential for diagnosing and treating complex human diseases. Because identifying LMIs with wet experiments is time-consuming and labor-intensive, some computational methods have been developed to infer LMIs. However, these approaches excel at utilizing single-modal information but struggle to integrate multimodal data from lncRNAs and miRNAs, which is essential for uncovering complex patterns in LMIs, ultimately limiting their performance. Therefore, this article proposes a novel multimodal contrastive representation learning model (MCRLMI) for LMI predictions. The model fully integrates multi-source similarity information and sequence encodings of lncRNAs and miRNAs. It leverages a graph convolutional network (GCN) and a Transformer to capture local neighborhood structural features and long-distance dependencies, respectively, enabling the collaborative modeling of structural and semantic information. Subsequently, to effectively integrate multimodal characteristics with encoded information, a multichannel attention mechanism and contrastive learning are introduced to fuse the extracted features. Finally, a Kolmogorov-Arnold Network (KAN) is trained with the optimized embeddings to predict LMIs. Extensive experiments show that the proposed MCRLMI consistently outperforms existing methods. Moreover, case studies further validate the potential of MCRLMI to identify novel LMIs in practical applications.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf281\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf281","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Enhancing LncRNA-miRNA interaction prediction with multimodal contrastive representation learning.
Interactions between long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) play an important role in the development of complex human diseases by collaboratively regulating gene transcription and expression. Therefore, identifying lncRNA-miRNA interactions (LMIs) is essential for diagnosing and treating complex human diseases. Because identifying LMIs with wet experiments is time-consuming and labor-intensive, some computational methods have been developed to infer LMIs. However, these approaches excel at utilizing single-modal information but struggle to integrate multimodal data from lncRNAs and miRNAs, which is essential for uncovering complex patterns in LMIs, ultimately limiting their performance. Therefore, this article proposes a novel multimodal contrastive representation learning model (MCRLMI) for LMI predictions. The model fully integrates multi-source similarity information and sequence encodings of lncRNAs and miRNAs. It leverages a graph convolutional network (GCN) and a Transformer to capture local neighborhood structural features and long-distance dependencies, respectively, enabling the collaborative modeling of structural and semantic information. Subsequently, to effectively integrate multimodal characteristics with encoded information, a multichannel attention mechanism and contrastive learning are introduced to fuse the extracted features. Finally, a Kolmogorov-Arnold Network (KAN) is trained with the optimized embeddings to predict LMIs. Extensive experiments show that the proposed MCRLMI consistently outperforms existing methods. Moreover, case studies further validate the potential of MCRLMI to identify novel LMIs in practical applications.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.