{"title":"High-fat diet enhances cell proliferation and compromises intestinal permeability in a translational canine intestinal organoid model","authors":"Itsuma Nagao, Yoko M. Ambrosini","doi":"10.1186/s12860-024-00512-w","DOIUrl":"https://doi.org/10.1186/s12860-024-00512-w","url":null,"abstract":"Emerging evidence underscores the responsiveness of the mammalian intestine to dietary cues, notably through the involvement of LGR5 + intestinal stem cells in orchestrating responses to diet-driven signals. However, the effects of high-fat diet (HFD) on these cellular dynamics and their impact on gut integrity remain insufficiently understood. Our study aims to assess the multifaceted interactions between palmitic acid (PA), cell proliferation, and the intestinal epithelial barrier using a canine colonoid model. Canine models, due to their relevance in simulating human intestinal diseases, offer a unique platform to explore the molecular mechanisms underlying HFD derived intestinal dysfunction. Canine colonoids were subjected to PA exposure, a surrogate for the effects of HFD. This intervention revealed a remarkable augmentation of cell proliferative activity. Furthermore, we observed a parallel reduction in transepithelial electrical resistance (TEER), indicating altered epithelium barrier integrity. While E-cadherin exhibited consistency, ZO-1 displayed a noteworthy reduction in fluorescence intensity within the PA-exposed group. By employing canine intestinal organoid systems, we provide compelling insights into the impact of PA on intestinal physiology. These findings underscore the importance of considering both cell proliferative activity and epithelial integrity in comprehending the repercussions of HFDs on intestinal health. Our study contributes to a deeper understanding of the consequences of HFD on intestinal homeostasis, utilizing valuable translational in vitro models derived from dogs.","PeriodicalId":9099,"journal":{"name":"BMC Molecular and Cell Biology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140837756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jeeyeon Lee, Eun-Ae Kim, Jieun Kang, Yee Soo Chae, Ho Yong Park, Byeongju Kang, Soo Jung Lee, In Hee Lee, Ji-Young Park, Nora Jee-young Park, Jin Hyang Jung
{"title":"Long non-coding RNA SOX2OT in tamoxifen-resistant breast cancer","authors":"Jeeyeon Lee, Eun-Ae Kim, Jieun Kang, Yee Soo Chae, Ho Yong Park, Byeongju Kang, Soo Jung Lee, In Hee Lee, Ji-Young Park, Nora Jee-young Park, Jin Hyang Jung","doi":"10.1186/s12860-024-00510-y","DOIUrl":"https://doi.org/10.1186/s12860-024-00510-y","url":null,"abstract":"Hormone receptor (HR)-positive breast cancer can become aggressive after developing hormone-treatment resistance. This study elucidated the role of long non-coding RNA (lncRNA) SOX2OT in tamoxifen-resistant (TAMR) breast cancer and its potential interplay with the tumor microenvironment (TME). TAMR breast cancer cell lines TAMR-V and TAMR-H were compared with the luminal type A cell line (MCF-7). LncRNA expression was assessed via next-generation sequencing, RNA extraction, lncRNA profiling, and quantitative RT-qPCR. SOX2OT overexpression effects on cell proliferation, migration, and invasion were evaluated using various assays. SOX2OT was consistently downregulated in TAMR cell lines and TAMR breast cancer tissue. Overexpression of SOX2OT in TAMR cells increased cell proliferation and cell invasion. However, SOX2OT overexpression did not significantly alter SOX2 levels, suggesting an independent interaction within TAMR cells. Kaplan–Meier plot analysis revealed an inverse relationship between SOX2OT expression and prognosis in luminal A and B breast cancers. Our findings highlight the potential role of SOX2OT in TAMR breast cancer progression. The downregulation of SOX2OT in TAMR breast cancer indicates its involvement in resistance mechanisms. Further studies should explore the intricate interactions between SOX2OT, SOX2, and TME in breast cancer subtypes.","PeriodicalId":9099,"journal":{"name":"BMC Molecular and Cell Biology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140635694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mice lacking DIO3 exhibit sex-specific alterations in circadian patterns of corticosterone and gene expression in metabolic tissues","authors":"Zhaofei Wu, M. Elena Martinez, Arturo Hernandez","doi":"10.1186/s12860-024-00508-6","DOIUrl":"https://doi.org/10.1186/s12860-024-00508-6","url":null,"abstract":"Disruption of circadian rhythms is associated with neurological, endocrine and metabolic pathologies. We have recently shown that mice lacking functional type 3 deiodinase (DIO3), the enzyme that clears thyroid hormones, exhibit a phase shift in locomotor activity, suggesting altered circadian rhythm. To better understand the physiological and molecular basis of this phenotype, we used Dio3+/+ and Dio3-/- mice of both sexes at different zeitgeber times (ZTs) and analyzed corticosterone and thyroxine (T4) levels, hypothalamic, hepatic, and adipose tissue expression of clock genes, as well as genes involved in the thyroid hormone action or physiology of liver and adipose tissues. Wild type mice exhibited sexually dimorphic circadian patterns of genes controlling thyroid hormone action, including Dio3. Dio3-/- mice exhibited altered hypothalamic expression of several clock genes at ZT12, but did not disrupt the overall circadian profile. Expression of clock genes in peripheral tissues was not disrupted by Dio3 deficiency. However, Dio3 loss in liver and adipose tissues disrupted circadian profiles of genes that determine tissue thyroid hormone action and physiology. We also observed circadian-specific changes in serum T4 and corticosterone as a result of DIO3 deficiency. The circadian alterations manifested sexual dimorphism. Most notable, the time curve of serum corticosterone was flattened in Dio3-/- females. We conclude that Dio3 exhibits circadian variations, influencing the circadian rhythmicity of thyroid hormone action and physiology in liver and adipose tissues in a sex-specific manner. Circadian disruptions in tissue physiology may then contribute to the metabolic phenotypes of DIO3-deficient mice.","PeriodicalId":9099,"journal":{"name":"BMC Molecular and Cell Biology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140324460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimization of seeding density of OP9 cells to improve hematopoietic differentiation efficiency.","authors":"Xin-Xing Jiang, Meng-Yi Song, Qi Li, Yun-Jian Wei, Yuan-Hua Huang, Yan-Lin Ma","doi":"10.1186/s12860-024-00503-x","DOIUrl":"10.1186/s12860-024-00503-x","url":null,"abstract":"<p><strong>Background: </strong>OP9 mouse stromal cell line has been widely used to induce differentiation of human embryonic stem cells (hESCs) into hematopoietic stem/progenitor cells (HSPCs). However, the whole co-culture procedure usually needs 14-18 days, including preparing OP9 cells at least 4 days. Therefore, the inefficient differentiation system is not appreciated. We aimed to optimize the culture conditions to improve differentiation efficiency.</p><p><strong>Methods: </strong>In the experimental group, we set six different densities of OP9 cells and just cultured them for 24 h before co-culture, and in the control group, OP9 cells were cultured for 4 days to reach an overgrown state before co-culture. Then we compared the hematopoietic differentiation efficiency among them.</p><p><strong>Results: </strong>OP9 cells were randomly assigned into two groups. In the experimental group, six different plated numbers of OP9 cells were cultured for 1 day before co-culture with hESCs. In contrast, in the control group, OP9 cells were cultured for 4 days at a total number of 3.1 × 10<sup>4</sup> cells/cm<sup>2</sup> in a 6-well plate to reach an overgrown state before co-culture. Hematopoietic differentiation was evaluated with CD34 immunostaining, and compared between these two groups. We could not influence the differentiation efficiency of OP9 cells with a total number of 10.4 × 10<sup>4</sup> cells/cm<sup>2</sup> in a 6-well plate which was cultured just for 1 day, followed by co-culture with hESCs. It reached the same differentiation efficiency 5 days earlier than the control group.</p><p><strong>Conclusion: </strong>The peak of CD34 + cells appeared 2 days earlier compared to the control group. A total number of 1.0 × 10<sup>6</sup> cells in a 6-well plate for OP9 cells was appropriate to have high differentiation efficiency.</p>","PeriodicalId":9099,"journal":{"name":"BMC Molecular and Cell Biology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10962148/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140206358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of an in vitro human alveolar epithelial air-liquid interface model using a small molecule inhibitor cocktail","authors":"Ikuya Tanabe, Kanae Ishimori, Shinkichi Ishikawa","doi":"10.1186/s12860-024-00507-7","DOIUrl":"https://doi.org/10.1186/s12860-024-00507-7","url":null,"abstract":"The alveolar epithelium is exposed to numerous stimuli, such as chemicals, viruses, and bacteria that cause a variety of pulmonary diseases through inhalation. Alveolar epithelial cells (AECs) cultured in vitro are a valuable tool for studying the impacts of these stimuli and developing therapies for associated diseases. However, maintaining the proliferative capacity of AECs in vitro is challenging. In this study, we used a cocktail of three small molecule inhibitors to cultivate AECs: Y-27632, A-83-01, and CHIR99021 (YAC). These inhibitors reportedly maintain the proliferative capacity of several types of stem/progenitor cells. Primary human AECs cultured in medium containing YAC proliferated for more than 50 days (over nine passages) under submerged conditions. YAC-treated AECs were subsequently cultured at the air-liquid interface (ALI) to promote differentiation. YAC-treated AECs on ALI day 7 formed a monolayer of epithelial tissue with strong expression of the surfactant protein-encoding genes SFTPA1, SFTPB, SFTPC, and SFTPD, which are markers for type II AECs (AECIIs). Immunohistochemical analysis revealed that paraffin sections of YAC-treated AECs on ALI day 7 were mainly composed of cells expressing surfactant protein B and prosurfactant protein C. Our results indicate that YAC-containing medium could be useful for expansion of AECIIs, which are recognized as local stem/progenitor cells, in the alveoli.","PeriodicalId":9099,"journal":{"name":"BMC Molecular and Cell Biology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140151534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jafar Rezaie, Mojtaba Jahanghiri, Reza Mosaddeghi- Heris, Sina Hassannezhad, Nima Abdyazdani, Afshin Rahbarghazi, Mahdi Ahmadi
{"title":"Melatonin reduces lung injury in type 1 diabetic mice by the modulation of autophagy","authors":"Jafar Rezaie, Mojtaba Jahanghiri, Reza Mosaddeghi- Heris, Sina Hassannezhad, Nima Abdyazdani, Afshin Rahbarghazi, Mahdi Ahmadi","doi":"10.1186/s12860-024-00505-9","DOIUrl":"https://doi.org/10.1186/s12860-024-00505-9","url":null,"abstract":"In recent years, the role of autophagy has been highlighted in the pathogenesis of diabetes and inflammatory lung diseases. In this study, using a diabetic model of mice, we investigated the expression of autophagy-related genes in the lung tissues following melatonin administration. Data showed histopathological remodeling in lung tissues of the D group coincided with an elevated level of IL-6, Becline-1, LC3, and P62 compared to the control group (p < 0.05). After melatonin treatment, histopathological remodeling was improved D + Mel group. In addition, expression levels of IL-6, Becline-1, LC3, and P62 were decreased in D + Mel compared to D group (P < 0.05). Statistically significant differences were not obtained between Mel group and C group (p > 0.05). Our results showed that melatonin injection can be effective in the amelioration of lung injury in diabetic mice presumably by modulating autophagy-related genes.","PeriodicalId":9099,"journal":{"name":"BMC Molecular and Cell Biology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140126842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammad Shaver, Kassandra Gomez, Katherine Kaiser, Joshua D. Hutcheson
{"title":"Mechanical stretch leads to increased caveolin-1 content and mineralization potential in extracellular vesicles from vascular smooth muscle cells","authors":"Mohammad Shaver, Kassandra Gomez, Katherine Kaiser, Joshua D. Hutcheson","doi":"10.1186/s12860-024-00504-w","DOIUrl":"https://doi.org/10.1186/s12860-024-00504-w","url":null,"abstract":"Hypertension-induced mechanical stress on vascular smooth muscle cells (VSMCs) is a known risk factor for vascular remodeling, including vascular calcification. Caveolin-1 (Cav-1), an integral structural component of plasma membrane invaginations, is a mechanosensitive protein that is required for the formation of calcifying extracellular vesicles (EVs). However, the role of mechanics in Cav-1-induced EV formation from VSMCs has not been reported. Exposure of VSMCs to 10% mechanical stretch (0.5 Hz) for 72 h resulted in Cav-1 translocation into non-caveolar regions of the plasma membrane and subsequent redistribution of Cav-1 from the VSMCs into EVs. Inhibition of Rho-A kinase (ROCK) in mechanically-stimulated VSMCs exacerbated the liberation of Cav-1 positive EVs from the cells, suggesting a potential involvement of actin stress fibers in this process. The mineralization potential of EVs was measured by incubating the EVs in a high phosphate solution and measuring light scattered by the minerals at 340 nm. EVs released from stretched VSMCs showed higher mineralization potential than the EVs released from non-stretched VSMCs. Culturing VSMCs in pro-calcific media and exposure to mechanical stretch increased tissue non-specific alkaline phosphatase (ALP), an important enzyme in vascular calcification, activity in EVs released from the cells, with cyclic stretch further elevating EV ALP activity compared to non-stretched cells. Our data demonstrate that mechanical stretch alters Cav-1 trafficking and EV release, and the released EVs have elevated mineralization potential.","PeriodicalId":9099,"journal":{"name":"BMC Molecular and Cell Biology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140126840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tito N. Habib, Mohammed O. Altonsy, Salah A. Ghanem, Mohamed S. Salama, Mai A. Hosny
{"title":"Optimizing combination therapy in prostate cancer: mechanistic insights into the synergistic effects of Paclitaxel and Sulforaphane-induced apoptosis","authors":"Tito N. Habib, Mohammed O. Altonsy, Salah A. Ghanem, Mohamed S. Salama, Mai A. Hosny","doi":"10.1186/s12860-024-00501-z","DOIUrl":"https://doi.org/10.1186/s12860-024-00501-z","url":null,"abstract":"Combination therapies in cancer treatment have demonstrated synergistic or additive outcomes while also reducing the development of drug resistance compared to monotherapy. This study explores the potential of combining the chemotherapeutic agent Paclitaxel (PTX) with Sulforaphane (SFN), a natural compound primarily found in cruciferous vegetables, to enhance treatment efficacy in prostate cancer. Two prostate cancer cell lines, PC-3 and LNCaP, were treated with varying concentrations of PTX, SFN, and their combination. Cell viability was assessed using the thiazolyl blue tetrazolium bromide (MTT) assay to determine the EC50 values. Western blot analysis was conducted to evaluate the expression of Bax, Bcl2, and Caspase-3 activation proteins in response to individual and combined treatments of PTX and SFN. Fluorescent microscopy was employed to observe morphological changes indicative of apoptotic stress in cell nuclei. Flow cytometry analysis was utilized to assess alterations in cell cycle phases, such as redistribution and arrest. Statistical analyses, including Student’s t-tests and one-way analysis of variance with Tukey’s correction, were performed to determine significant differences between mono- and combination treatments. The impact of PTX, SFN, and their combination on cell viability reduction was evaluated in a dose-dependent manner. The combined treatment enhanced PTX’s effects and decreased the EC50 values of both drugs compared to individual treatments. PTX and SFN treatments differentially regulated the expression of Bax and Bcl2 proteins in PC-3 and LNCaP cell lines, favoring apoptosis over cell survival. Our data indicated that combination therapy significantly increased Bax protein expression and the Bax/Bcl2 ratio compared to PTX or SFN alone. Flow cytometry analysis revealed alterations in cell cycle phases, including S-phase arrest and an increased population of apoptotic cells. Notably, the combination treatments did not have a discernible impact on necrotic cells. Signs of apoptotic cell death were confirmed through Caspase-3 cleavage, and morphological changes in cell nuclei were assessed via western blot and fluorescent microscopy. This combination therapy of PTX and SFN has the potential to improve prostate cancer treatment by minimizing side effects while maintaining efficacy. Mechanistic investigations revealed that SFN enhances PTX efficacy by promoting apoptosis, activating caspase-3, inducing nuclear morphology changes, modulating the cell cycle, and altering Bax and Bcl2 protein expression. These findings offer valuable insights into the synergistic effects of PTX and SFN, supporting the optimization of combination therapy and providing efficient therapeutic strategies in preclinical research.","PeriodicalId":9099,"journal":{"name":"BMC Molecular and Cell Biology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140026347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hee Ju Song, Young Hwan Kim, Han Na Choi, Taehee Kim, Soo Jin Kim, Min Woong Kang, Sang Do Lee
{"title":"TonEBP/NFAT5 expression is associated with cisplatin resistance and migration in macrophage-induced A549 cells.","authors":"Hee Ju Song, Young Hwan Kim, Han Na Choi, Taehee Kim, Soo Jin Kim, Min Woong Kang, Sang Do Lee","doi":"10.1186/s12860-024-00502-y","DOIUrl":"10.1186/s12860-024-00502-y","url":null,"abstract":"<p><strong>Background: </strong>Macrophages promote angiogenesis, metastasis, and drug resistance in several cancers. Similarly, TonEBP/NFAT5 induces metastasis in renal carcinoma and colon cancer cells. However, the role of this transcription factor and that of macrophages in lung cancer cells remains unclear. Therefore, this study investigated the effects of macrophages and TonEBP/NFAT5 expression on cisplatin resistance and migration in A549 lung adenocarcinoma cells.</p><p><strong>Results: </strong>A549 cells were cultured alone or indirectly co-cultured with THP-1-derived macrophages using a transwell culture chamber. Cisplatin-induced cell death was markedly decreased and migration increased in co-cultured A549 cells. Macrophage-conditioned media (CM) showed a similar effect on drug resistance and migration. Cisplatin-induced apoptosis, DNA fragmentation, and cleaved apoptotic proteins PARP and caspase-3 were markedly reduced in macrophage CM-induced A549 cells. Here, ERK, p38, JNK, and NF-κB activities were increased by macrophage CM. Furthermore, the proteins involved in cisplatin resistance and cancer cell migration were identified using specific inhibitors of each protein. ERK and NF-κB inhibition considerably reduced cisplatin resistance. The increase in macrophage CM-induced migration was partially reduced by treatment with ERK, JNK, and NF-κB inhibitors. TonEBP/NFAT5 expression was increased by macrophages, resulting in increased cisplatin resistance, cell migration, and invasion. Moreover, RNAi-mediated knockdown of TonEBP/NFAT5 reduced cisplatin resistance, migration, and invasion in macrophage CM-induced A549 cells.</p><p><strong>Conclusions: </strong>These findings demonstrate that paracrine factors secreted from macrophages can change A549 cells, resulting in the induction of drug resistance against cisplatin and migration. In addition, the TonEBP/NFAT5 ratio, increased by macrophages, is an important regulator of the malignant transformation of cells.</p>","PeriodicalId":9099,"journal":{"name":"BMC Molecular and Cell Biology","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10913585/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140027341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}