Brazilian Journal of Microbiology最新文献

筛选
英文 中文
Insect cell production of chimeric virus-like particles based on human immunodeficiency virus GAG proteins and yellow fever virus envelope protein 用昆虫细胞生产基于人类免疫缺陷病毒 GAG 蛋白和黄热病病毒包膜蛋白的嵌合病毒样颗粒
IF 2.2 4区 生物学
Brazilian Journal of Microbiology Pub Date : 2024-09-10 DOI: 10.1007/s42770-024-01509-5
Fabricio da Silva Morgado, Roberta Cahú, Daniela Carrilho de Jesus, Lorena Carvalho de Souza Chaves, Bergmann Morais Ribeiro
{"title":"Insect cell production of chimeric virus-like particles based on human immunodeficiency virus GAG proteins and yellow fever virus envelope protein","authors":"Fabricio da Silva Morgado, Roberta Cahú, Daniela Carrilho de Jesus, Lorena Carvalho de Souza Chaves, Bergmann Morais Ribeiro","doi":"10.1007/s42770-024-01509-5","DOIUrl":"https://doi.org/10.1007/s42770-024-01509-5","url":null,"abstract":"<p>The yellow fever virus (YFV) is a single stranded RNA virus belonging to the genus <i>Orthoflavivirus</i> that is capable of zoonotic transmissions that infect nonhuman and human primates. It is endemic in Brazil with recurrent epidemics of the disease, and it is transmitted through mosquitoes. The detection and immunization against YFV and other flaviviruses are fundamental for the management of the impacts of the disease in human environments. In an ongoing effort to develop new approaches for diagnostics and immunizations, we expressed VLPs displaying the yellow fever virus envelope protein (YFE) using recombinant baculovirus in insect cells. By co-expressing HIV-1 Pr55<sup>Gag</sup> protein (GAG) together with YFE we were able to generate chimeric VLPs containing a GAG core together with an envelope containing the YFE protein. The YFE and the chimeric GAG-YFE VLPs have potential as vaccine candidates and as reagents for serological assays in the detection of these viruses in human sera.</p>","PeriodicalId":9090,"journal":{"name":"Brazilian Journal of Microbiology","volume":"109 5 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142195431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nutritional conditions affecting of selenium nanoparticles synthesized by Fusarium oxysporum (CCASU-2023-F9), and their biological activities against mycotoxin-producing fungi isolated from animal feed. 影响氧孢镰刀菌(CCASU-2023-F9)合成硒纳米粒子的营养条件及其对动物饲料中分离的产霉菌毒素真菌的生物活性。
IF 2.1 4区 生物学
Brazilian Journal of Microbiology Pub Date : 2024-09-06 DOI: 10.1007/s42770-024-01494-9
Mohamed M Gharieb, Esraa M Hassan, Azza Mahmoud Soliman
{"title":"Nutritional conditions affecting of selenium nanoparticles synthesized by Fusarium oxysporum (CCASU-2023-F9), and their biological activities against mycotoxin-producing fungi isolated from animal feed.","authors":"Mohamed M Gharieb, Esraa M Hassan, Azza Mahmoud Soliman","doi":"10.1007/s42770-024-01494-9","DOIUrl":"https://doi.org/10.1007/s42770-024-01494-9","url":null,"abstract":"<p><p>One of the most promising biologically based nanomanufacturing processes is the production of selenium nanoparticles (SeNPs) by fungi. The use of these biosynthesized nanoparticles in agricultural practices has emerged as a new approach for controlling pathogen growth and mycotoxin production. In the present study, different chemical and physical parameters were investigated for the growth of Fusarium oxysporum (CCASU-2023-F9) to increase selenite reduction and obtain the highest yield of selenium nanoparticles (SeNPs). Fusarium oxysporum (CCASU-2023-F9) exhibited tolerance to up to 1 mM sodium selenite (Na<sub>2</sub>SeO<sub>3</sub>), accompanied by red coloration of the medium, which suggested the reduction of selenite and the formation of selenium nanoparticles (SeNPs). Reduced selenite was quantified using inductively coupled plasma‒mass spectrometry (ICP-MS), and the results revealed that Fusarium oxysporum (CCASU-2023-F9) is able to transform 45.5% and 50.9% of selenite into elemental selenium by using fructose and urea as the best carbon and nitrogen sources, respectively. An incubation temperature of 30 °C was the best physical condition at which 67.4% of the selenite was transformed into elemental selenium. The results also indicated that pH 7 was the optimum pH, as it displayed 27.2% selenite reduction with a net dry weight of 6.8 mg/mL. Increasing the concentration of sulfate resulted in a significant increase in selenite reduction, as it reached a maximum value of 75.3% at 0.15% g/ml sulfate. The maximum reduction in sodium selenite content was 85.2% at a C/N ratio of 2:1. The biosynthesized SeNPs exhibited antifungal activity against several fungi, such as Aspergillus flavus, Aspergillus niger, and Fusarium oxysporum, that were isolated from animal and poultry feed. Elevated SeNP concentrations (10500 ppm) significantly inhibited fungal growth. SeNPs at a concentration of 5000 ppm inhibited aflatoxin production (B1, B2, G1, and G2) by A. flavus, in addition to inhibiting mycotoxin production (T2 toxin, fumonisin B1, zearaleone, fusarin C, and moniliformin) by F. oxysporum. In conclusion, the results revealed favorable nutritional conditions for the maximum production of SeNPs by Fusarium oxysporum (CCASU-2023-F9) and indicated the marked inhibitory effect of SeNPs on mycotoxins that contaminate animal feed, causing serious consequences for animal health, and that lead to improving the quality of commercially produced animal feed. The obtained results can serve as a basis for commercial applicability.</p>","PeriodicalId":9090,"journal":{"name":"Brazilian Journal of Microbiology","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142139281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemical characterization and biological activity of Curvularia Lunata, an endophytic fungus isolated from lemongrass (Cymbopogon citratus). 从柠檬香茅(Cymbopogon citratus)中分离出的内生真菌 Curvularia Lunata 的化学特征和生物活性。
IF 2.1 4区 生物学
Brazilian Journal of Microbiology Pub Date : 2024-09-05 DOI: 10.1007/s42770-024-01503-x
Mehak Kaur, Rahul C Mishra, Vaibhavi Lahane, Anita Kumari, Akhilesh K Yadav, Monika Garg, Colin J Barrow, Mayurika Goel
{"title":"Chemical characterization and biological activity of Curvularia Lunata, an endophytic fungus isolated from lemongrass (Cymbopogon citratus).","authors":"Mehak Kaur, Rahul C Mishra, Vaibhavi Lahane, Anita Kumari, Akhilesh K Yadav, Monika Garg, Colin J Barrow, Mayurika Goel","doi":"10.1007/s42770-024-01503-x","DOIUrl":"https://doi.org/10.1007/s42770-024-01503-x","url":null,"abstract":"<p><p>Exploration of medicinal plants for bioactive-producing endophytic fungi is a relatively unmapped source of pharmaceutically important compounds. In this study, the endophytic fungus Curvularia lunata AREF029 isolated from the medicinal plant Cymbopogon citratus (known as lemongrass) was assessed for its biological activity. The methanolic extract of AREF029 had minimum inhibition concentration (MIC) ranging from 38 to 174 µg/ml against phytopathogenic fungi Alteranria solani, Fusarium oxysporum and Rhizoctonia solani. Furthermore, the AREF029 methanolic extract displayed a broad-spectrum MIC of 25 µg/ml in the case of Staphylococcus aureus, Salmonella typhimurium and MRSA (methicillin-resistant S. aureus). In vitro cytotoxicity analysis with murine macrophage cell line RAW 264.7 determined 56% nitric oxide inhibition activity at 200 µg/ml concentration of the extract and more than 99% cell viability. Gas chromatography-mass spectrometry (GC-MS) and Liquid chromatography-high resolution mass spectrometry (LC-HRMS) analyses showed the presence of methoxy-5-methyl-4-oxo-2,5-hexadienoic acid (penicillic acid), phthalic acid, bis (7-methyloctyl) ester, 8-hydroxyquinoline, tetroquinone, curvulamine, Curvuleremophilane B/D, Chromonilinc acid A/C and other putative bioactive compounds in the extract. The current investigation supports the significance of the endophytic fungus C. lunata as a source of potent antibacterial, antifungal and anti-inflammatory compounds.</p>","PeriodicalId":9090,"journal":{"name":"Brazilian Journal of Microbiology","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142131813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genomic insights into a Proteus mirabilis strain inducing avian cellulitis. 从基因组学角度研究诱发禽蜂窝组织炎的 mirabilis 变形杆菌菌株。
IF 2.1 4区 生物学
Brazilian Journal of Microbiology Pub Date : 2024-09-05 DOI: 10.1007/s42770-024-01508-6
Bruno Henrique Dias de Oliva, Arthur Bossi do Nascimento, João Paulo de Oliveira, Gustavo Henrique Migliorini Guidone, Beatriz Lernic Schoeps, Luana Carvalho Silva, Mario Gabriel Lopes Barbosa, Victor Hugo Montini, Admilton Gonçalves de Oliveira Junior, Sérgio Paulo Dejato Rocha
{"title":"Genomic insights into a Proteus mirabilis strain inducing avian cellulitis.","authors":"Bruno Henrique Dias de Oliva, Arthur Bossi do Nascimento, João Paulo de Oliveira, Gustavo Henrique Migliorini Guidone, Beatriz Lernic Schoeps, Luana Carvalho Silva, Mario Gabriel Lopes Barbosa, Victor Hugo Montini, Admilton Gonçalves de Oliveira Junior, Sérgio Paulo Dejato Rocha","doi":"10.1007/s42770-024-01508-6","DOIUrl":"https://doi.org/10.1007/s42770-024-01508-6","url":null,"abstract":"<p><p>Proteus mirabilis, a microorganism distributed in soil, water, and animals, is clinically known for causing urinary tract infections in humans. However, recent studies have linked it to skin infections in broiler chickens, termed avian cellulitis, which poses a threat to animal welfare. While Avian Pathogenic Escherichia coli (APEC) is the primary cause of avian cellulitis, few cases of P. mirabilis involvement are reported, raising questions about the factors facilitating such occurrences. This study employed a pan-genomic approach to investigate whether unique genes exist in P. mirabilis strains causing avian cellulitis. The genome of LBUEL-A33, a P. mirabilis strain known to cause this infection, was assembled, and compared with other P. mirabilis strains isolated from poultry and other sources. Additionally, in silico serogroup analysis was conducted. Results revealed numerous genes unique to the LBUEL-A33 strain. No function in cellulitis was identified for these genes, and in silico investigation of the virulence potential of LBUEL-A33's exclusive proteins proved inconclusive. These findings support that multiple factors are necessary for P. mirabilis to cause avian cellulitis. Furthermore, this species likely employs its own unique arsenal of virulence factors, as many identified mechanisms are analogous to those of E. coli. While antigenic gene clusters responsible for serogroups were identified, no clear trend was observed, and the gene cluster of LBUEL-A33 did not show homology with any sequenced Proteus serogroups. These results reinforce the understanding that this disease is multifactorial, necessitating further research to unravel the mechanisms and underpin the development of control and prevention strategies.</p>","PeriodicalId":9090,"journal":{"name":"Brazilian Journal of Microbiology","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142131814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The mntH gene of Burkholderia cenocepacia influences motility and quorum sensing to control virulence. 伯克霍尔德氏菌的 mntH 基因影响运动和法定量感应,从而控制毒力。
IF 2.1 4区 生物学
Brazilian Journal of Microbiology Pub Date : 2024-09-04 DOI: 10.1007/s42770-024-01506-8
Chunxi Yang, Chaoyu Cui, Fengyi Deng
{"title":"The mntH gene of Burkholderia cenocepacia influences motility and quorum sensing to control virulence.","authors":"Chunxi Yang, Chaoyu Cui, Fengyi Deng","doi":"10.1007/s42770-024-01506-8","DOIUrl":"https://doi.org/10.1007/s42770-024-01506-8","url":null,"abstract":"<p><p>Quorum sensing (QS) signals widely exist in bacteria to control biological functions in response to populations of cells. Burkholderia cenocepacia, an important opportunistic pathogen in patients with cystic fibrosis (CF), is commonly found in the environment and mostly utilizes the N-acylhomoserine lactone (AHL) and cis-2-dodecenoic acid (BDSF) QS systems to control biological functions. Our previous study illuminated the detailed mechanism by which B.cenocepacia integrates BDSF and cyclic diguanosine monophosphate (c-di-GMP) signals to control virulence. Here, we employed Tn5 transposon mutagenesis to identify genes related to the BDSF QS system. One of the most significantly attenuated mutants had an insertion in the mntH gene. Here, we showed that MntH (Bcam0836), a manganese transport protein, controls QS-regulated phenotypes, including motility, biofilm formation and virulence. We also found that. BDSF production was attenuated at both the gene and signaling levels in the Bcam0836 mutant, and that Bcam0836 influenced the expression of some genes regulated by the BDSF receptor RpfR and the downstream regulator GtrR. These results show that the manganese transport protein. MntH modulates a subset of genes and functions regulated by the QS system in B. cenocepacia.</p>","PeriodicalId":9090,"journal":{"name":"Brazilian Journal of Microbiology","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detection of virulent Klebsiella pneumoniae strains causing intestinal and extraintestinal infections during the 80s and 90s in Brazil. 80 年代和 90 年代在巴西检测到引起肠道和肠道外感染的毒性肺炎克雷伯氏菌菌株。
IF 2.1 4区 生物学
Brazilian Journal of Microbiology Pub Date : 2024-09-03 DOI: 10.1007/s42770-024-01502-y
Tiago Barcelos Valiatti, Pedro Henrique Soares Nunes, Fernanda Fernandes Santos, Rodrigo Cayô, Ingrid Nayara Marcelino, Felipe Alberto-Lei, Haian Araujo Varjão, Ana Cristina Gales, Tânia Aparecida Tardelli Gomes
{"title":"Detection of virulent Klebsiella pneumoniae strains causing intestinal and extraintestinal infections during the 80s and 90s in Brazil.","authors":"Tiago Barcelos Valiatti, Pedro Henrique Soares Nunes, Fernanda Fernandes Santos, Rodrigo Cayô, Ingrid Nayara Marcelino, Felipe Alberto-Lei, Haian Araujo Varjão, Ana Cristina Gales, Tânia Aparecida Tardelli Gomes","doi":"10.1007/s42770-024-01502-y","DOIUrl":"https://doi.org/10.1007/s42770-024-01502-y","url":null,"abstract":"<p><p>Klebsiella pneumoniae is an important pathogen that causes several human infections, which is currently among the main bacterial species of clinical importance. Given the importance of understanding the characteristics of this pathogen and its evolutionary aspects, in this study, we sought to characterize strains of K. pneumoniae recovered in the 1980s and 1990s in São Paulo, Brazil. Our analyses included 48 strains recovered from diarrheagenic stools and extraintestinal infections. These strains were submitted to screening for virulence and ESβL-encoding genes, antimicrobial susceptibility tests, biofilm formation, and hypermucosity and hemolytic activity tests. Our results revealed that among the studied virulence genes, the most frequent were entB (100%), followed by iutA (100%), mrkD (98%), and ycfM (72%). Phenotypic tests revealed that the strains were non- hemolytic, and two strains were positive for the hypermucoviscosity phenotype but did not have the genetic markers associated with this phenotype. Furthermore, 17% of the isolates proved to be strong biofilm producers. Antimicrobial susceptibility testing demonstrated that most strains were susceptible to the tested antimicrobials, with the exception of five isolates that produced CTX-M-2. Our findings indicate that the collection of strains studied showed variability in virulence factors, as well as biofilm production. Still, a minority of the strains showed clinically significant resistance mechanisms. As far as we know, this is the oldest collection of K. pneumoniae studied in the country.Keywords: Bacterial virulence; Ancient bacterial strains; Enterobacterales; Bacterial infection; Diarrhea.</p>","PeriodicalId":9090,"journal":{"name":"Brazilian Journal of Microbiology","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isolation of Monocrotophos degrading bacterial consortium from agricultural soil for in vivo analysis of pesticide degradation. 从农业土壤中分离降解久效磷的细菌群,用于农药降解的体内分析。
IF 2.1 4区 生物学
Brazilian Journal of Microbiology Pub Date : 2024-09-02 DOI: 10.1007/s42770-024-01497-6
Ramesh Kande, Karthik Rajkumar, Pawan Kumar Anoor, Srinivas Naik, Sandeepta Burgula
{"title":"Isolation of Monocrotophos degrading bacterial consortium from agricultural soil for in vivo analysis of pesticide degradation.","authors":"Ramesh Kande, Karthik Rajkumar, Pawan Kumar Anoor, Srinivas Naik, Sandeepta Burgula","doi":"10.1007/s42770-024-01497-6","DOIUrl":"https://doi.org/10.1007/s42770-024-01497-6","url":null,"abstract":"<p><p>Extensive Monocrotophos (MCP) application in agricultural soils has led to its ubiquitous accumulation in the environment. Human health can be adversely affected by chronic exposure to produce and water from such areas, causing endocrine dysfunction, birth defects, blood and nervous disorders. This study investigated the possibility of detecting Monocrotophos-degrading bacteria in soil samples taken from a cotton cultivation field in a local area. We isolated a consortium that could tolerate and neutralize Monocrotophos upto a concentration of 2000 ppm. The consortium on 16 S rRNA sequencing were identified as Micrococcus luteus SBR2, Rhodococcus SBR5, Bacillus aryabhattai SBR8, Ochrobactrum intermedium SBK2. Significant tolerance of individual strains in the range of 500-5000 ppm was observed when incubating them in vitro with Monocrotophos in minimal salt medium. An analysis of the degrading genes opdA, mpd, and opd revealed plasmid borne opdA and mpd in the O.intermedium strain and B.aryabhattai strain. All the strains indicated genomic opdA and mpd whereas opd was not detected in plasmid or genomic DNA. The HPLC showed no peak at 2.5 min, when individual strains were incubated with Monocrotophos. The HPLC analysis of soil samples incubated with the consortium for two weeks showed complete degradation of Monocrotophos. GC-MS analysis confirmed that Monocrotophos and its solvent cyclohexamide were degraded into non-toxic compounds such as cyclotrisiloxane compounds, acetic acid, and others. This study indicates that the expression of organophosphate hydrolyzing enzymes in the consortium can greatly contribute to the neutralization of organophosphorus compounds and also serve as a bioremediation method for agricultural soils.</p>","PeriodicalId":9090,"journal":{"name":"Brazilian Journal of Microbiology","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142104255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation into the effect of the culture conditions and optimization on limonene-1,2-diol production from the biotransformation of limonene using Pestalotiopsis mangiferae LaBMicrA-505. 利用 Pestalotiopsis mangiferae LaBMicrA-505 进行柠檬烯的生物转化,研究培养条件和优化对柠檬烯-1,2-二醇产量的影响。
IF 2.1 4区 生物学
Brazilian Journal of Microbiology Pub Date : 2024-09-01 Epub Date: 2024-07-18 DOI: 10.1007/s42770-024-01457-0
Elison de Souza Sevalho, Bruno Nicolau Paulino, Antonia Queiroz Lima de Souza, Afonso Duarte Leão de Souza
{"title":"Investigation into the effect of the culture conditions and optimization on limonene-1,2-diol production from the biotransformation of limonene using Pestalotiopsis mangiferae LaBMicrA-505.","authors":"Elison de Souza Sevalho, Bruno Nicolau Paulino, Antonia Queiroz Lima de Souza, Afonso Duarte Leão de Souza","doi":"10.1007/s42770-024-01457-0","DOIUrl":"10.1007/s42770-024-01457-0","url":null,"abstract":"<p><p>Different bioproducts can be obtained by changing operative condition of biotechnological process, and this bioprocess aspect is a significant approach to be adopted on industrial scale leading to the creation of new natural aroma. Thus, this study aimed to investigate the culture conditions and optimization of the biotransformation of limonene into limonene-1,2-diol using Pestalotiopsis mangiferae LaBMicrA-505 obtained from the Brazilian Amazon. The study started with the investigation of the establishment of culture, followed by optimization of the conditions for biotransformation of R-(+)-limonene to limonene-1,2-diol, using shake flasks. The fresh biomass of P. mangiferae LaBMicrA-505 obtained in liquid media supplemented with yeast-malt extract under with 72 h (stationary phase) performed better diol productivity when compared to other biomasses. Finally, in the modeling of contour plots and surface responses of a central composite design, the use of 4 g l<sup>- 1</sup> biomass, 2% of the substrate at 24 °C, 120 rpm, and pH of 6.0 could maximize the production of limonene-1,2-diol, accumulated up to 98.34 ± 1.53% after 96 h of reaction. This study contributed to identified operational condition for the R-(+)-limonene bioconversion scale-up. The endophytic fungus P. mangiferae LaBMicrA-505 proved to be a potent biocatalyst to biotechnologically produce limonene-1,2-diol, an aroma compounds with interesting bioactive features that up to now has been manufactured by extraction from plants with long and not environmentally friendly procedures.</p>","PeriodicalId":9090,"journal":{"name":"Brazilian Journal of Microbiology","volume":" ","pages":"2239-2251"},"PeriodicalIF":2.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405579/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141632644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioactive compound from marine seagrass Streptomyces argenteolus TMA13: combatting fish pathogens with time-kill kinetics and live-dead cell imaging. 来自海洋海草 Streptomyces argenteolus TMA13 的生物活性化合物:利用时间致死动力学和活死细胞成像技术对抗鱼类病原体。
IF 2.1 4区 生物学
Brazilian Journal of Microbiology Pub Date : 2024-09-01 Epub Date: 2024-07-19 DOI: 10.1007/s42770-024-01407-w
Lokesh Elumalai, Siddharthan Nagarajan, Sivarajan Anbalmani, Sangeetha Murthy, Radhakrishnan Manikkam, Balagurunathan Ramasamy
{"title":"Bioactive compound from marine seagrass Streptomyces argenteolus TMA13: combatting fish pathogens with time-kill kinetics and live-dead cell imaging.","authors":"Lokesh Elumalai, Siddharthan Nagarajan, Sivarajan Anbalmani, Sangeetha Murthy, Radhakrishnan Manikkam, Balagurunathan Ramasamy","doi":"10.1007/s42770-024-01407-w","DOIUrl":"10.1007/s42770-024-01407-w","url":null,"abstract":"<p><p>Actinobacteria, pervasive in aquatic and terrestrial environments, exhibit a filamentous morphology, possess DNA with a specific G + C content and production of numerous secondary metabolites. This study, focused on actinobacteria isolated from marine seagrass, investigating their antibacterial activity against fish pathogens. Among 28 isolates, Streptomyces argenteolus TMA13 displayed the maximum zone of inhibition against fish pathogens-Aeromonas hydrophila (10 mm), Aeromonas caviae (22 mm), Edwardsiella tarda (17 mm), Vibrio harveyi (22 mm) and Vibrio anguillarum (12 mm) using the agar plug method. Optimization of this potent strain involved with various factors, including pH, temperature, carbon source and salt condition to enhance both yield production and antibacterial efficacy. In anti-biofilm assay shows the maximum percentage of inhibition while increasing concentration of TMA13 extract. Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC) assays with TMA13 crude extract demonstrated potent activity against fish pathogens at remarkably low concentrations. Time-kill kinetics assay showcased growth curve variations over different time intervals for all fish pathogens treated with a 100 µg/ml concentration of crude extract, indicating a decline in cells viability and progression into the death phase. Additionally, fluorescence microscopic visualization of bacterial cells exposed to the extracts emitting green and red fluorescence, enabling live-dead cell differentiation was also studied. Further characterization of the crude extract through GC-MS and FT-IR analyses performed and identified secondary metabolites with functional groups exhibiting significant antibacterial activity. This study elucidates the capacity of Streptomyces argenteolus TMA13 to enhance the production of antibiotic compounds effective against fish pathogens.</p>","PeriodicalId":9090,"journal":{"name":"Brazilian Journal of Microbiology","volume":" ","pages":"2669-2681"},"PeriodicalIF":2.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405562/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141723035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In silico designing of multi-epitope vaccine against canine parvovirus using reverse vaccinology. 利用反向疫苗学原理设计犬细小病毒多位元疫苗。
IF 2.1 4区 生物学
Brazilian Journal of Microbiology Pub Date : 2024-09-01 Epub Date: 2024-07-26 DOI: 10.1007/s42770-024-01442-7
Tamiris Silva Lopes, Brenda Picoli Gheno, Luiza Dos Santos Miranda, Joana Detofano, Md Anik Ashfaq Khan, André Felipe Streck
{"title":"In silico designing of multi-epitope vaccine against canine parvovirus using reverse vaccinology.","authors":"Tamiris Silva Lopes, Brenda Picoli Gheno, Luiza Dos Santos Miranda, Joana Detofano, Md Anik Ashfaq Khan, André Felipe Streck","doi":"10.1007/s42770-024-01442-7","DOIUrl":"10.1007/s42770-024-01442-7","url":null,"abstract":"<p><p>Canine parvovirus (CPV-2) is a highly contagious virus affecting dogs worldwide, posing a significant threat. The VP2 protein stands out as the predominant and highly immunogenic structural component of CPV-2. Soon after its emergence, CPV-2 was replaced by variants known as CPV-2a, 2b and 2c, marked by changes in amino acid residue 426 of VP2. Additional amino acid alterations have been identified within VP2, with certain modifications serving as signatures of emerging variants. In Brazil, CPV-2 outbreaks persist with diverse VP2 profiles. Vaccination is the main preventive measure against the virus. However, the emergence of substitutions presents challenges to conventional vaccine methods. Commercial vaccines are formulated with strains that usually do not match those currently circulating in the field. To address this, the study aimed to investigate CPV-2 variants in Brazil, predict epitopes, and design an in silico vaccine tailored to local variants employing reverse vaccinology. The methodology involved data collection, genetic sequence analysis, and amino acid comparison between field strains and vaccines, followed by the prediction of B and T cell epitope regions. The predicted epitopes were evaluated for antigenicity, allergenicity and toxicity. The final vaccine construct consisted of selected epitopes linked to an adjuvant and optimized for expression in Escherichia coli. Structural predictions confirmed the stability and antigenicity of the vaccine, while molecular docking demonstrated interaction with the canine toll-like receptor 4. Molecular dynamics simulations indicated a stable complex formation. In silico immune simulations demonstrated a progressive immune response post-vaccination, including increased antibody production and T-helper cell activity. The multi-epitope vaccine design targeted prevalent CPV-2 variants in Brazil and potentially other regions globally. However, experimental validation is essential to confirm our in silico findings.</p>","PeriodicalId":9090,"journal":{"name":"Brazilian Journal of Microbiology","volume":" ","pages":"2953-2968"},"PeriodicalIF":2.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405728/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141765412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信