Jiajun Du, Junyu Xue, Xutong Tian, Juyue Luo, Ali Doğan Ömür, Jianying Yang, Yumeng Li
{"title":"Selenium-Enriched Aspergillus oryzae A02 Enhances Testicular Antioxidant Capacity in Mice by Regulating Intestinal Microbiota and Serum Metabolite.","authors":"Jiajun Du, Junyu Xue, Xutong Tian, Juyue Luo, Ali Doğan Ömür, Jianying Yang, Yumeng Li","doi":"10.1007/s12011-024-04496-8","DOIUrl":"10.1007/s12011-024-04496-8","url":null,"abstract":"<p><p>Selenium (Se) is a trace element that is essential for health. Organic Se created by Se-enriched microorganisms has the characteristics of low toxicity, high bioavailability, and regulation of physiological functions. Here, the regulatory effect of Se-enriched Aspergillus oryzae A02 on the reproductive function of male mice and its potential molecular mechanism was studied. Specifically, twenty-four male mice were randomly divided into a control group and a Se-enriched A. oryzae A02 (Nano-Se) (daily gavage of 0.5 mg/kg, dissolved in saline) for an 8-week experiment. The results showed that Nano-Se intervention did not affect body weight and testicular index, but increased sperm concentration and seminiferous epithelium height in experimental mice, indicating that Nano-Se has the potential to improve the reproductive performance of male mice. Mechanistically, Nano-Se intervention increased the levels of antioxidant-related indicators catalase (CAT) and glutathione peroxidase (GSH-Px) in mouse serum, and increased the relative mRNA expression of GSH-Px, heme oxygenase-1 (HO-1), and NADPH quinine oxidoreductase-1 (NQO-1) in testicular tissues. We identified 9,10,13-trihydroxyoctadecenoic acids (TriHOMEs), stearidonic acid and selenomethionine linked with alpha-linolenic acid metabolism, selenocompound metabolism, folate biosynthesis, ubiquinone, and other terpenoid-quinone biosynthesis and biosynthesis of cofactors. In addition, Nano-Se did not influence the fecal bacterial alpha and beta diversity (P > 0.05), but increased the abundance of the Actinobacteriota and Proteobacteria phyla and the Staphylococcus and Corynebacterium genera, and lowered the abundance of the Bacteroidota phylum and the Lactobacillus and norank_f_Muribaculaceae genera. Nano-Se is considered a novel and promising nutritional regulator to improve reproductive function.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":"4283-4295"},"PeriodicalIF":3.4,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142871233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Activation of the De Novo Serine Synthesis Pathway and Disruption of Insulin Signaling Induced by Supplemental SeMet in Vitro.","authors":"Shuo Zhan, Jiaqiang Huang, Yiqun Liu, Feng Han, Jianrong Wang, Qin Wang, Zhenwu Huang","doi":"10.1007/s12011-024-04492-y","DOIUrl":"10.1007/s12011-024-04492-y","url":null,"abstract":"<p><p>Selenium (Se) intake or selenoprotein overexpression can cause abnormal glucose metabolism and increase the risk of type 2 diabetes (T2D). The purpose of this study is to observe whether glycolysis bypass in the de novo serine synthesis pathway (SSP) is activated under high-Se stress in vitro. Initially, HCT-116, L02, HepG2, and differentiated C2C12 cells were exposed to five selenomethionine (SeMet) concentrations (0.001 to 10 µmol/L) for 48 h. The expressions of glutathione peroxidase 1 (GPX1), selenoprotein P (SELENOP), 3-phosphoglycerate dehydrogenase (PHGDH), and serine hydroxy-methyltransferases 1 (SHMT1) were assessed by western blotting (WB). Then, corresponding to the peak expressions of GPX1, SELENOP, and PHGDH, 0.1 µmol/L SeMet was identified as the highest intervention concentration. With more detailed levels of SeMet (0.001 to 0.1 µmol/L) given, the differentiated C2C12 cells were treated for 48 h to analyze the expressions of selenoproteins, enzymes related with serine metabolism and insulin signaling pathway. Among the four cell lines, the expressions of selenoproteins and metabolic enzymes of serine in C2C12 cells were more sensitive to changes in Se concentrations, which was similar to that in L02 cells. In C2C12 cells, the expressions of GPX1, SELENOP, selenoprotein N (SELENON), PHGDH, and SHMT1 exhibited a parabolic inflection point at SeMet concentrations of 0.05 µmol/L or 0.075 µmol/L, while 5,10-methylenetetrahydrofolate reductase (MTHFR) and methionine synthase (MS) showed no such trend. After 15 min of insulin stimulation, glucose retained more in the culture medium due to the decreased uptake by C2C12 cells. The expressions of key enzymes (AKT, AKT (Ser-473), AKT (Thr-308), mTOR, and PI3K) in the PI3K-AKT-mTOR signaling pathway decreased with the increased level of SeMet. This study demonstrated that excessive Se intake could induce abnormal glucose metabolism via SSP and impair the normal signaling of insulin in the differentiated C2C12 cells.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":"4087-4099"},"PeriodicalIF":3.4,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142943687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Changyu Cao, Nixin Chen, Huquan Zhu, Huimin Ouyang, Xinran Li
{"title":"Selenium Ameliorates Aluminum Poisoning-Induced Impaired Production of Neutrophil Extracellular Traps in Chicken.","authors":"Changyu Cao, Nixin Chen, Huquan Zhu, Huimin Ouyang, Xinran Li","doi":"10.1007/s12011-024-04485-x","DOIUrl":"10.1007/s12011-024-04485-x","url":null,"abstract":"<p><p>Neutrophil extracellular traps (NETs) are released by neutrophils to modulate the immune response. Aluminum (Al) poisoning is linked to immunotoxicity, and selenium (Se) can maintain immune homeostasis. In this study, we investigated the toxic effects of Al on the release of NETs, the antagonistic effect of Se on Al-induced toxicity, and the potential molecular mechanisms underlying these processes. We assessed the cytotoxicity of aluminum on neutrophils using CCK-8 assay, visualized the structure of selenium/aluminum-induced NETs through immunofluorescence and scanning electron microscope, quantified ROS release during NETs formation using fluorescence microplate analysis, and employed the selenoprotein levels to dissect the mechanisms underlying selenium and aluminum-induced NETs release. Peripheral blood neutrophils were exposed to zymosan for a duration of 3 h to induce the formation of NETs. Microscopic analysis indicated that NETs formation was inhibited in the presence of aluminum. Furthermore, assessments using a multifunctional microplate reader demonstrated that aluminum suppressed both the production of extracellular DNA and the reactive oxygen species burst in neutrophils. Western blot analysis revealed that aluminum altered the levels of cellular selenoproteins. In contrast, Se reduced the Al-induced toxic reaction including restored NETs production, ROS burst, and selenoprotein levels. These results indicate that Al decreases the formation of NETs induced by Zym, while Se inhibits the Al toxicity, promoting the formation of NETs by modulating the expression of selenoprotein.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":"4318-4325"},"PeriodicalIF":3.4,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142827250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"BPA Exacerbates Zinc Deficiency-Induced Testicular Tissue Inflammation in Male Mice Through the TNF-α/NF-κB/Caspase8 Signaling Pathway.","authors":"Xinying Wang, Jing Ma, Wen Li, Zhan Hou, Huanhuan Li, Yuanjing Li, Shusong Wang, Yanqing Tie","doi":"10.1007/s12011-024-04464-2","DOIUrl":"10.1007/s12011-024-04464-2","url":null,"abstract":"<p><p>Bisphenol A (BPA) is an endocrine-disrupting chemical that is toxic to reproduction. Zinc (Zn) plays an important role in male reproductive health. Zn deficiency (ZD) can co-exist with BPA. In order to investigate the specific mechanism of reproductive damage caused by BPA exposure in ZD male mice, a mouse model of ZD, BPA exposure, and their combined exposure was established in this study. Forty 4-week-old SPF male ICR mice with an average body weight of 31.7 ± 4.2 g were divided into four groups including normal Zn diet group 30 mg/(kg•d), BPA exposure group 150 mg/(kg•d), zinc deficiency diet group 7.5 mg/(kg•d), and BPA + ZD combined exposure group (BPA 150 mg/(kg•d) + ZD 7.5 mg/(kg•d)). The mice were kept for 8 weeks. The results showed that the testicular tissue structure was disturbed, and semen quality, serum Zn, testicular tissue Zn, and testicular tissue free Zn ions were decreased in the BPA-exposed and ZD groups. The expression of zinc transporters (ZIP7, ZIP8, ZIP13, and ZIP14) in testicular tissue was changed. The expressions of pro-inflammatory cytokines including TNF-α and IL-1β as well as inflammatory pathway-related proteins (IKB-α, p-IKB-α, NF-κB, p-NF-κB, Caspase8, and Caspase3) were increased, while the expressions of anti-inflammatory cytokines (TGF-β and IL-10) were decreased. The changes in the above indexes in the BPA + ZD group were more obvious. Both BPA exposure and ZD can induce testicular tissue inflammation through the TNF-α/NF-κB/Caspase8 signaling pathway, and BPA further aggravates zinc deficiency-induced testicular tissue inflammation and apoptosis damage.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":"4153-4163"},"PeriodicalIF":3.4,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142784012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sánchez-Gasca J E, Debray-García Y, Corona-Galvan I A, Uribe-Ramirez T M, Sierra-Vargas M P, Aztatzi-Aguilar O G
{"title":"Fluoride Induces Toxic Effects on the A549 Pulmonary Cell Line at Non-cytotoxic Concentrations.","authors":"Sánchez-Gasca J E, Debray-García Y, Corona-Galvan I A, Uribe-Ramirez T M, Sierra-Vargas M P, Aztatzi-Aguilar O G","doi":"10.1007/s12011-024-04499-5","DOIUrl":"10.1007/s12011-024-04499-5","url":null,"abstract":"<p><p>Fluoride is emitted into the air not only through gas emissions but also from volcanic ash, leading to contact via inhalation. Therefore, the objective of the present study was to evaluate the cellular and biochemical responses in the A549 cell line after exposure to NaF (sodium fluoride) concentrations lower than those previously used in other studies to determine the impact on the lung epithelium. A549 cells were exposed to different concentrations (0.0001 to 5 mM) of NaF for 24 h. No cytotoxicity was observed in the cells after exposure to NaF concentrations of 0.0001 to 1 mM. However, an increase in oxidative damage was observed at concentrations of 0.0001-0.001 and 1-5 mM. There were alterations in the antioxidant system related to glutathione synthesis, since there was a decrease in glutathione-s-transferase activity and γ-glutamyltransferase concentration at non-cytotoxic concentrations. Non-cytotoxic concentrations also resulted in an increase in the expression of the proteins pulmonary surfactant B and γ-glutamyl cysteine ligase. A reduction in PPARα was also observed, which coincided with a decrease in the levels of non-esterified fatty acids at the same NaF concentrations. Finally, IL-6 was the only interleukin with increased levels at all NaF concentrations. In general, an increase was also observed in the other interleukins, but only at concentrations of 0.1-5 mM. These results suggest that the lung epithelium may be a toxicological target of fluoride after exposure to low concentrations.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":"4118-4127"},"PeriodicalIF":3.4,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142926371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Venu Konda, Ravindranadh Palika, Ananthan Rajendran, C N Neeraja, R M Sundaram, Raghu Pullakhandam
{"title":"Zinc-Biofortified Rice Improves Growth in Zinc-Deficient Rats.","authors":"Venu Konda, Ravindranadh Palika, Ananthan Rajendran, C N Neeraja, R M Sundaram, Raghu Pullakhandam","doi":"10.1007/s12011-024-04487-9","DOIUrl":"10.1007/s12011-024-04487-9","url":null,"abstract":"<p><p>Biofortification of staple food crops with zinc (Zn) is considered a sustainable strategy to prevent deficiency, but evidence on their health impact is awaited. The weaning Wistar/Kyoto male rats were fed on a Zn-deficient diet (ZDD, < 0.1 ppm) for 4 weeks followed by repletion (pair feeding) with control rice diet without (CRD; 5.0 ± 0.23 ppm) or with additional Zn (CRD + Zn, 30.3 ± 0.60 ppm) or biofortified rice diet (BRD; 8.54 ± 0.51 ppm) for 3 weeks. Body weights, plasma, liver, pancreatic, fecal Zn levels, and intestinal ZIP4 and ZnT1 mRNA expression were measured at the end of the experiment. The body weight of rats fed on CRD or CRD + Zn or BRD significantly increased (p < 0.01) compared to rats fed on ZDD. The body weight BRD was significantly higher compared to CRD (P < 0.01), both of which remained lower compared to CRD + Zn (p < 0.03). Repletion of Zn through either CRD or BRD significantly increased the plasma Zn concentration (PZC), tissue, and fecal Zn excretion compared to ZDD, without significant between-group differences. However, PZC, tissue, and fecal Zn of CRD + Zn was significantly higher compared to the rest of the groups. The intestinal ZIP4 and ZnT1 mRNA expressions are consistent with Zn status and/or dietary Zn exposure. A similar PZC, tissue, and fecal Zn in CRD compared to BRD, despite higher Zn intakes in the latter, could be due to preferential shuttling of Zn for growth. Together, these results indicate that Zn from biofortified rice is efficiently utilized for promoting the growth in Zn-deficient rats.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":"4256-4263"},"PeriodicalIF":3.4,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142833842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Franco Cervellati, Mascia Benedusi, Alice Casoni, Giulia Trinchera, Andrea Vallese, Francesca Ferrara, Maria Chiara Pietrogrande, Giuseppe Valacchi
{"title":"Effect of Cu- and Fe- Isolated from Environmental Particulate Matter on Mitochondrial Dynamics in Human Colon CaCo-2 Cells.","authors":"Franco Cervellati, Mascia Benedusi, Alice Casoni, Giulia Trinchera, Andrea Vallese, Francesca Ferrara, Maria Chiara Pietrogrande, Giuseppe Valacchi","doi":"10.1007/s12011-024-04497-7","DOIUrl":"10.1007/s12011-024-04497-7","url":null,"abstract":"<p><p>Atmospheric particulate matter (PM) is one of the most dangerous air pollutants of anthropogenic origin; it consists of a heterogeneous mixture of inorganic and organic components, including transition metals and polycyclic aromatic hydrocarbons. Although previous studies have focused on the effects of exposure to highly concentrated PM on the respiratory and cardiovascular systems, emerging evidence supports a significant impact of air pollution on the gastrointestinal (GI) tract by linking exposure to external stressors with conditions such as appendicitis, colorectal cancer, and inflammatory bowel disease. In general, it has been hypothesized that the main mechanism involved in PM toxicity consists of an inflammatory response and this has also been suggested for the GI tract. In the present study, we analyzed the effect of specific redox-active PM components, such as copper (Cu) and iron (Fe), in human intestinal cells focusing on ultrastructural integrity, redox homeostasis, and modulation of some mitochondrial-related markers. According to our results, exposure to Cu- and Fe-PM components and their combination induced ultrastructural alterations in the endoplasmic reticulum and in the mitochondria with an additive effect when combined. The increase in ROS and the loss of the mitochondrial mass in the cells exposed to PM indicates that mitochondria are a target of acute metal exposure. Furthermore, the gene expression and the protein levels of mitochondria dynamics markers were affected by the PM exposure. In particular, OPA1 increases at both gene and protein levels in all conditions while Mitofusin1 decreases significantly only in the presence of Fe. The increase in PINK expression is modulated by Fe, while Cu seems to affect mainly Parkin. Finally, a significant decrease in trans-epithelial resistance was also observed. In general, our study can confirm the correlation observed between pollution exposure areas and increased incidence of GI tract conditions.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":"4100-4117"},"PeriodicalIF":3.4,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142908765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yasmina M Abd-Elhakim, Mohamed M M Hashem, Khaled Abo-El-Sooud, Abeer E El-Metawally, Bayan A Hassan
{"title":"Coenzyme Q10 Attenuates Kidney Injury Induced by Titanium Dioxide Nanoparticles and Cadmium Co-exposure in Rats.","authors":"Yasmina M Abd-Elhakim, Mohamed M M Hashem, Khaled Abo-El-Sooud, Abeer E El-Metawally, Bayan A Hassan","doi":"10.1007/s12011-024-04469-x","DOIUrl":"10.1007/s12011-024-04469-x","url":null,"abstract":"<p><p>This study examined the possible defensive role of coenzyme Q10 (CQ10) against the impact of cadmium (Cd) and titanium dioxide nanoparticle (TNP) exposure on rat kidneys. Distilled water (1 mL/rat), corn oil (1 mL/rat), 10 mg CQ10/kg b.wt, 50 mg TNP/kg b.wt, 5 mg Cd/kg b.wt, TNP + Cd, or TNP + Cd + CQ10 was administered orally to seven groups of 70 male Sprague Dawley rats for 60 days. The findings demonstrated that TNP and/or Cd exposure considerably raised serum levels of several renal damage products, disturbed electrolyte balance including sodium, potassium, and calcium, decreased antioxidant enzyme concentration in the kidneys, and elevated malondialdehyde. In addition, rats exposed to TNP and/or Cd had significantly higher levels of renal titanium and Cd. In addition, rats exposed to TNP and/or Cd showed significant histopathological lesions and collagen deposition as revealed by H and E and Masson trichrome staining, respectively. The kidneys were severely damaged by the combined effects of TNP and Cd, although CQ10 greatly mitigated these effects. According to the study, exposure to TNP and Cd can damage the kidneys' function and structure, especially when combined. However, CQ10 can protect against TNP and Cd's nephrotoxic effects.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":"4183-4197"},"PeriodicalIF":3.4,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12174286/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142871212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdolbaset B K Baset, Karzan A M Hawrami, Elizabeth H Bailey, Scott D Young
{"title":"Selenium Biofortification of Vegetables Grown in Calcareous Soil: A Pot Experiment Using <sup>77</sup>Se as a Tracer.","authors":"Abdolbaset B K Baset, Karzan A M Hawrami, Elizabeth H Bailey, Scott D Young","doi":"10.1007/s12011-024-04483-z","DOIUrl":"10.1007/s12011-024-04483-z","url":null,"abstract":"<p><p>Dietary selenium (Se) is vital for human health and can be provided through consumption of Se-rich vegetables. Soil Se is often poorly available and so biofortification using Se-enriched fertilizers is used to enhance dietary intake. This study aimed to (a) evaluate the feasibility of biofortifying vegetables, commonly grown in the calcareous soils of Kurdistan, with a single application of Se (10 g ha<sup>-1</sup>) as selenate and, (b) trace the fate of applied Se using an enriched stable isotope, ⁷⁷Se. A randomized block pot experiment was conducted with five vegetable species: celery, chard, lettuce, radish, and spring onion. Soils were spiked with 2 µg ⁷⁷Se per pot, simulating 10 g ha<sup>-1</sup>. Plants were harvested after 8 weeks, and both plant tissues and soils underwent sequential extraction and isotopic analysis to determine Se fractionation and source apportionment. Across all species, plant uptake of native soil Se (Se<sub>s</sub>) exceeded that of fertilizer-derived Se (Se<sub>f</sub>). Shoot concentrations of Se<sub>s</sub> ranged from 58.2 to 115 µg kg<sup>-1</sup>, while ⁷⁷Se<sub>f</sub> concentrations varied between 10.5 and 46.9 µg kg<sup>-1</sup>. Post-harvest soil analyses indicated immobilization of applied ⁷⁷Se: 55% transitioned to organically bound forms, 40% became recalcitrant, and only 5% remained in plant-available fractions. The study underscores the challenges of Se biofortification in calcareous soils, where interaction with CaCO<sub>3</sub> may reduce Se availability. Variations in Se uptake among vegetable species highlight the importance of application timing. To enhance biofortification efficacy for fast-growing leafy vegetables, mid-season or foliar Se applications are recommended to counteract rapid soil immobilization.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":"4397-4407"},"PeriodicalIF":3.4,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142827251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Angela M Moro, Natália Brucker, Gabriela Goethel, Ingrid Flesch, Sabrina Nascimento, Mariele Charão, Bruna Gauer, Elisa Sauer, Larissa V Cestonaro, Gabriel Pedroso Viçozzi, Adriana Gioda, Tatiana D Saint'Pierre, Marcelo D Arbo, Ingrid Garcia, Shanda A Cattani, Rodrigo R Petrecelli, Mirkos Ortiz Martins, Solange Cristina Garcia
{"title":"The Influence of Blood Titanium Levels on DNA Damage in Brazilian Workers Occupationally Exposed to Different Chemical Agents.","authors":"Angela M Moro, Natália Brucker, Gabriela Goethel, Ingrid Flesch, Sabrina Nascimento, Mariele Charão, Bruna Gauer, Elisa Sauer, Larissa V Cestonaro, Gabriel Pedroso Viçozzi, Adriana Gioda, Tatiana D Saint'Pierre, Marcelo D Arbo, Ingrid Garcia, Shanda A Cattani, Rodrigo R Petrecelli, Mirkos Ortiz Martins, Solange Cristina Garcia","doi":"10.1007/s12011-024-04472-2","DOIUrl":"10.1007/s12011-024-04472-2","url":null,"abstract":"<p><p>Occupational exposure to pollutants may cause health-damaging effects in humans. Genotoxicity assays can be used to detect the toxic effects of pollutants. In the present study, we evaluated genetic damage in three populations occupationally exposed to benzene, pyrenes, and agrochemicals and assessed the possible influence of titanium (Ti) co-exposure. A total of 275 subjects were enrolled in this study. The occupationally exposed population was composed of 201 male individuals, divided into three different groups: gas station attendants (GSA group) (n = 76), taxi drivers (TD group) (n = 97), farmers (farmers group) (n = 28), and control (n = 74). Biomarkers of exposure and effect were investigated such as AChe, BuChE, t,t-muconic acid (t,t-MA), and 1-hydroxypyrene (1-OHP). Ti levels in blood were higher in all the workers compared with the control group. DNA damage evaluated by comet assay was higher in the taxi drivers and farmers than in the controls, and the frequency of micronucleate buccal cells was higher in the gas station attendants and taxi drivers than in the controls. Correlations were found among occupational exposure time and biomarkers of exposure, genotoxicity biomarkers, and blood Ti levels. Our results demonstrated Ti co-exposure in the gas station attendants, taxi drivers, and farmers, and blood Ti levels were linked with the respective biomarkers of exposure. Additionally, tools through machine learning corroborated these findings, and Ti was the factor that contributed to DNA damage. Thus, the present study indicates the role of Ti in occupational settings and interactions with already known major xenobiotics present in the occupational environment contributing to genotoxicity.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":"4013-4026"},"PeriodicalIF":3.4,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142852264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}