揭示三氧化二砷对 MCF-7 和 MDA-MB-231 乳腺癌细胞株细胞毒性的作用机制

IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biological Trace Element Research Pub Date : 2025-10-01 Epub Date: 2025-02-24 DOI:10.1007/s12011-025-04543-y
Amir Shadboorestan, Darya Baluchi, Omid Safa, Amin Reza Nikpoor, Mahnoosh Mokhtarinejad, Mahmoud Omidi
{"title":"揭示三氧化二砷对 MCF-7 和 MDA-MB-231 乳腺癌细胞株细胞毒性的作用机制","authors":"Amir Shadboorestan, Darya Baluchi, Omid Safa, Amin Reza Nikpoor, Mahnoosh Mokhtarinejad, Mahmoud Omidi","doi":"10.1007/s12011-025-04543-y","DOIUrl":null,"url":null,"abstract":"<p><p>Arsenic trioxide (ATO) induces oxidative stress and apoptotic cell death in cancer cells; however, the underlying mechanisms and its effects on other signaling pathways, particularly in breast cancer, remain inadequately understood. The aryl hydrocarbon receptor (AhR) is expressed in breast cancer cells and linked to disease progression, while Notch signaling enhances migratory properties in these cells. The simultaneous use of the AhR agonist (FICZ), AhR antagonist (CH223191), and Notch antagonist (DAPT) was intended to investigate how the modulation of these pathways affects the response of breast cancer cells (MDA-MB-231 and MCF-7 cell) to ATO. We measured cell viability, reactive oxygen species (ROS) levels, mitochondrial membrane potential (MMP), and cell migration. Results show that ATO significantly reduces cell viability in a dose- and time-dependent manner, decreasing MMP and increasing ROS levels. Notably, co-exposure to ATO and CH223191 for 24 h enhanced cell viability, increased MMP, and diminished ROS compared to ATO alone. Also, the ATO + CH223191 + DAPT combination exhibited higher MMP and lower ROS levels than the ATO + FICZ + DAPT combination, indicating AhR inhibition's critical role in MMP regulation. Although ATO reduced migration compared to controls, adding DAPT or FICZ significantly increased migration percentages. Interestingly, co-exposure to CH223191 did not exhibit this effect and modulated the migratory effects of DAPT + ATO and FICZ + ATO combinations. In conclusion, these findings suggest that AhR stimulation via FICZ may enhance ATO's therapeutic effects, while simultaneous exposure to ATO, FICZ, and DAPT may lead to additive effects, reducing MMP and increasing ROS levels.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":"5170-5182"},"PeriodicalIF":3.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling the Mechanisms of AhR-Notch Interplay in Mediating Arsenic Trioxide Cytotoxicity in MCF-7 and MDA-MB-231 Breast Cancer Cell Lines.\",\"authors\":\"Amir Shadboorestan, Darya Baluchi, Omid Safa, Amin Reza Nikpoor, Mahnoosh Mokhtarinejad, Mahmoud Omidi\",\"doi\":\"10.1007/s12011-025-04543-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Arsenic trioxide (ATO) induces oxidative stress and apoptotic cell death in cancer cells; however, the underlying mechanisms and its effects on other signaling pathways, particularly in breast cancer, remain inadequately understood. The aryl hydrocarbon receptor (AhR) is expressed in breast cancer cells and linked to disease progression, while Notch signaling enhances migratory properties in these cells. The simultaneous use of the AhR agonist (FICZ), AhR antagonist (CH223191), and Notch antagonist (DAPT) was intended to investigate how the modulation of these pathways affects the response of breast cancer cells (MDA-MB-231 and MCF-7 cell) to ATO. We measured cell viability, reactive oxygen species (ROS) levels, mitochondrial membrane potential (MMP), and cell migration. Results show that ATO significantly reduces cell viability in a dose- and time-dependent manner, decreasing MMP and increasing ROS levels. Notably, co-exposure to ATO and CH223191 for 24 h enhanced cell viability, increased MMP, and diminished ROS compared to ATO alone. Also, the ATO + CH223191 + DAPT combination exhibited higher MMP and lower ROS levels than the ATO + FICZ + DAPT combination, indicating AhR inhibition's critical role in MMP regulation. Although ATO reduced migration compared to controls, adding DAPT or FICZ significantly increased migration percentages. Interestingly, co-exposure to CH223191 did not exhibit this effect and modulated the migratory effects of DAPT + ATO and FICZ + ATO combinations. In conclusion, these findings suggest that AhR stimulation via FICZ may enhance ATO's therapeutic effects, while simultaneous exposure to ATO, FICZ, and DAPT may lead to additive effects, reducing MMP and increasing ROS levels.</p>\",\"PeriodicalId\":8917,\"journal\":{\"name\":\"Biological Trace Element Research\",\"volume\":\" \",\"pages\":\"5170-5182\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Trace Element Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12011-025-04543-y\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Trace Element Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12011-025-04543-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

三氧化二砷(ATO)诱导癌细胞氧化应激和凋亡细胞死亡然而,潜在的机制及其对其他信号通路的影响,特别是在乳腺癌中,仍然没有充分了解。芳烃受体(AhR)在乳腺癌细胞中表达并与疾病进展有关,而Notch信号通路增强了这些细胞的迁移特性。同时使用AhR激动剂(FICZ), AhR拮抗剂(CH223191)和Notch拮抗剂(DAPT)旨在研究这些途径的调节如何影响乳腺癌细胞(MDA-MB-231和MCF-7细胞)对ATO的反应。我们测量了细胞活力、活性氧(ROS)水平、线粒体膜电位(MMP)和细胞迁移。结果表明,ATO以剂量和时间依赖的方式显著降低细胞活力,降低MMP和增加ROS水平。值得注意的是,与ATO单独相比,ATO和CH223191共暴露24小时可提高细胞活力,增加MMP,减少ROS。此外,ATO + CH223191 + DAPT组合比ATO + FICZ + DAPT组合表现出更高的MMP和更低的ROS水平,表明AhR抑制在MMP调节中起关键作用。尽管与对照组相比,ATO减少了迁移,但添加DAPT或FICZ显著增加了迁移百分比。有趣的是,共暴露于CH223191没有表现出这种效应,并且调节了DAPT + ATO和FICZ + ATO组合的迁移效应。综上所述,这些发现表明,通过FICZ刺激AhR可增强ATO的治疗效果,而同时暴露于ATO、FICZ和DAPT可能导致叠加效应,降低MMP并增加ROS水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unraveling the Mechanisms of AhR-Notch Interplay in Mediating Arsenic Trioxide Cytotoxicity in MCF-7 and MDA-MB-231 Breast Cancer Cell Lines.

Arsenic trioxide (ATO) induces oxidative stress and apoptotic cell death in cancer cells; however, the underlying mechanisms and its effects on other signaling pathways, particularly in breast cancer, remain inadequately understood. The aryl hydrocarbon receptor (AhR) is expressed in breast cancer cells and linked to disease progression, while Notch signaling enhances migratory properties in these cells. The simultaneous use of the AhR agonist (FICZ), AhR antagonist (CH223191), and Notch antagonist (DAPT) was intended to investigate how the modulation of these pathways affects the response of breast cancer cells (MDA-MB-231 and MCF-7 cell) to ATO. We measured cell viability, reactive oxygen species (ROS) levels, mitochondrial membrane potential (MMP), and cell migration. Results show that ATO significantly reduces cell viability in a dose- and time-dependent manner, decreasing MMP and increasing ROS levels. Notably, co-exposure to ATO and CH223191 for 24 h enhanced cell viability, increased MMP, and diminished ROS compared to ATO alone. Also, the ATO + CH223191 + DAPT combination exhibited higher MMP and lower ROS levels than the ATO + FICZ + DAPT combination, indicating AhR inhibition's critical role in MMP regulation. Although ATO reduced migration compared to controls, adding DAPT or FICZ significantly increased migration percentages. Interestingly, co-exposure to CH223191 did not exhibit this effect and modulated the migratory effects of DAPT + ATO and FICZ + ATO combinations. In conclusion, these findings suggest that AhR stimulation via FICZ may enhance ATO's therapeutic effects, while simultaneous exposure to ATO, FICZ, and DAPT may lead to additive effects, reducing MMP and increasing ROS levels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological Trace Element Research
Biological Trace Element Research 生物-内分泌学与代谢
CiteScore
8.70
自引率
10.30%
发文量
459
审稿时长
2 months
期刊介绍: Biological Trace Element Research provides a much-needed central forum for the emergent, interdisciplinary field of research on the biological, environmental, and biomedical roles of trace elements. Rather than confine itself to biochemistry, the journal emphasizes the integrative aspects of trace metal research in all appropriate fields, publishing human and animal nutritional studies devoted to the fundamental chemistry and biochemistry at issue as well as to the elucidation of the relevant aspects of preventive medicine, epidemiology, clinical chemistry, agriculture, endocrinology, animal science, pharmacology, microbiology, toxicology, virology, marine biology, sensory physiology, developmental biology, and related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信